

Clearwells	Inspection Findings					
May – June:	Conduct physical inspections of empty Clearwells					
	Install groundwater monitoring wells near Clearwells					
June – July:	Prepare and submit to WDNR Clearwell inspection reports					
	Develop Clearwells repair strategy					
	Sample groundwater and analyze for contaminants regulated under the Safe Drinking Water Act (SDWA)					
August:	Review findings with WDNR					
	Review project with Common Council					
3		©Jacobs 2020				
3						

Clearwells Inspection Findings

- Previously installed shotcrete lining is in poor condition.
- Remaining shotcrete is damp in locations and potentially masking cracks. Complete removal of shotcrete is needed to expose, map, and measure unsealed concrete cracks.

5

Clearwells Inspection Findings

- Some concrete surfaces are spongey, a common effect after exposure to chlorinated water for many years. Removing the top ½-inch of interior surfaces by blast cleaning prior to applying new corrosion resistant lining is needed.
- Moisture or leaking around pipes at wall penetrations is evident and pipe wall sleeves require replacement.

Groundwater Sampling Results

- Two new, PFAS-free groundwater monitoring wells were installed, one east and one west of the Clearwells.
- Three rounds of samples were analyzed for over 170 SDWA regulated contaminants: microorganisms, disinfectants, organics and inorganic chemicals, radionuclides, PFAS compounds, and other water quality parameters.
 - 20 PFAS compounds analyzed: majority of results below detection limits; a few results too low to make certain quantitation.
- Most results were well below SDWA maximum contaminant levels (MCLs) or below the laboratory test detection limit.
- Some positive results for coliform, fecal coliform; some Standard Plate Count results > 500 colony forming units/milliliter.

©Jacobs 2020

Collaboration with WDNR

"Buried clearwell" is a buried water storage tank located below groundwater table and below floodplain. Watertight buried clearwells do not comply with NR 811.

IF	THEN
Buried cleawell is watertight	Operation of non-compliant tank allowed with additional safeguards.
Buried clearwell needs standard maintenance, like concrete crack repair, to restore watertight condition	Standard maintenance work is not a project requiring WDNR review. Operation of repaired non-compliant tank allowed with additional safeguards.
Buried clearwell needs major repairs including concrete crack repair to restore watertight condition, replacement of interior concrete lining to mitigate corrosion, and/or addition of sloped membrane roof.	 Major repair and improvement work is a project requiring WDNR review. At time of WDNR review, all tank deficiencies must be addressed to bring the tank into full compliance with current code. Two possible paths forward are available: 1. Complete major repairs to restore watertight condition and add a downstream treatment system to achieve 4-log (99.99%) virus inactivation. 2. Replace buried tanks with compliant (above groundwater and floodplain) tanks and a pump station to fill the tanks.
9	©Jacobs 2020

9

Clearwells Alternatives

- Repair and rehabilitate Clearwells, install new High Lift Pump Station and downstream UV disinfection.
- Construct new at-grade reservoirs, new Intermediate and High Lift Pump Station.
 - Circular pre-stressed concrete reservoirs.
 - Square and rectangular cast-in-place concrete reservoirs.

Repair and Rehabilitate Clearwells – Continued

ADVANTAGES

- Maintain similar visual impacts.
- Intermediate pumping not required.

DISADVANTAGES

- Requires construction, operation, and maintenance of new treatment system to achieve 99.99% virus inactivation.
- Involves inherently lower-certainty repair methods to provided significantly shorter service life with anticipated major reinvestment required in 20 to 30 years.
- Risk of groundwater inflow into Clearwells between inspections.
- Requires more frequent empty Clearwells inspections.

14

14

©Jacobs 2020

Construct At-Grade Reservoirs – Continued

ADVANTAGES

- Drinking water protection from potential groundwater and flood water contamination.
- Complies with regulations and aligns with drinking water industry best practices.
- Involves conventional, lower-risk construction methods, with circular prestressed concrete lower risk than square cast-in-place concrete.
- Results in accessible facilities that are easier to maintain and repair when needed.

DISADVANTAGES

- Highly visible structures impact lake views.
- Required construction, operation, and maintenance of new Intermediate Pump Station.

©Jacobs 2020

ALTERNATIVES	ESTIMATED CONSTRUCTION COS	
Clearwells Rehabilitation with High Lift Pump Station and UV	¢20.011.000	
Repaired storage tanks estimated service life: 20 – 30 years	\$20,911,000	
At-Grade Rectangular Cast-in-Place Concrete Tanks with ntermediate and High Lift Pump Station	\$16,850,000	
New tanks estimated service life: 60 – 100 years		
At-Grade Circular Prestressed Concrete Tanks with ntermediate and High Lift Pump Station	\$12,699,000	
New tanks estimated service life: 60 – 100 years		

At-Grade Circular Prestressed Concrete Tanks		At-Grade Rectangular Cast in Place Concrete Tanks		Extend Existing Clearwells Service Life	
Estimated Service Life, years	60 - 100	Estimated Service Life, years	60 - 100	Estimated Service Life, years	20-30*
Tanks		Tanks		Repaired Clearwells	
Construction Cost	\$5,398,600	Construction Cost	\$9,548,300	Repairs Cost	\$11,139,000
Annual O&M Costs	\$11,000	Annual O&M Costs	\$31,200	Annual O&M Costs	\$63,500
20-Year Lifecycle Cost	\$5,588,600	20-Year Lifecycle Cost	10,088,300	20-Year Lifecycle Cost	\$12,122,900
High Lift Pump Station		High Lift Pump Station		High Lift Pump Station	
Construction Cost	\$4,746,100	Construction Cost	\$4,746,100	Construction Cost	\$4,746,100
Annual O&M Costs	\$148,700	Annual O&M Costs	\$148,700	Annual O&M Costs	\$148,700
20-Year Lifecycle Cost	\$7,277,100	20-Year Lifecycle Cost	\$7,277,100	20-Year Lifecycle Cost	\$7,277,100
Intermediate Pump Station		Intermediate Pump Station		UV Treatment	
Construction Cost	\$2,554,600	Construction Cost	\$2,554,600	Construction Cost	\$4,4850,000
Annual O&M Costs	\$41,100	Annual O&M Costs	\$34,200	Annual O&M Costs	\$143,000
20-Year Lifecycle Cost	\$3,254,600	20-Year Lifecycle Cost	\$3,144,600	20-Year Lifecycle Cost	\$6,915,000
20-Year Estimated Lifecycle Cost	\$16,110,300	20-Year Estimate Lifecycle Cost	\$20,459,400	20-Year Estimated Lifecycle Cost	\$26,315,000
Storage and Pumping		Storage and Pumping		Storage, Pumping and UV	

