Prepared for: City of Oshkosh Oshkosh, Wisconsin

Analysis of Brownfield Cleanup Alternatives

Redevelopment Parcel H Marion Road/Pearl Avenue Oshkosh, Wisconsin

AECOM, Inc. September 2009 Document No.: 13090-002

AECOM Environment 558 North Main Street, Oshkosh, WI 54901 T 920.235.0270 F 920.235.0321 <u>www.aecom.com</u>

September 30, 2009

Ms. Melissa L. Enoch, Brownfields Specialist Wisconsin Department of Natural Resources 101 S Webster RR/5 Madison, WI 53703

Subject: Analysis of Brownfield Cleanup Alternatives, City of Oshkosh Brownfields Assessment Cleanup Grant, Redevelopment Parcel H, City of Oshkosh, Wisconsin -- AECOM Project No. 13090-002

Dear Mr. Peterson,

On behalf of the City of Oshkosh (City), AECOM, Inc. has prepared the attached Analysis of Brownfield Cleanup Alternatives (ABCA) consistent with requirements of the Wisconsin Department of Natural Resources, Ready for Reuse Grant. This ABCA has been prepared for Redevelopment Parcel H located at the northwest corner of the intersection of Marion Road and Pearl Avenue, Oshkosh, Wisconsin. This ABCA provides an overview of site conditions, site cleanup objectives, and provides a review of remedial options. In addition, this ABCA includes an analysis of green cleanup criteria.

If you have any questions regarding the ABCA, please contact Mr. Paul Killian (920.406-3165), or Mr. Andrew Mott (920.235.0270). We appreciate your review of this document and support of the redevelopment efforts of the City of Oshkosh.

Respectfully,

hu & Moto

Andrew G. Mott, P.G., C.P.G. Project Hydrogeologist

Paul J. Killian, P.E. Principal Engineer

Cc: Mr. Darlene Brandt, Assistant Director of Planning Services Department of Community Development City of Oshkosh 215 Church Avenue Oshkosh, Wisconsin 54903-1130

Ms. Kathleen Sylvester Remediation and Redevelopment Program Wisconsin Department of Natural Resources 625 East County Road Y, Suite 700 Oshkosh, Wisconsin 54901

Contents

1.0	Intro	oduction	. 1-1
2.0	Site	Description and History	2-1
	2.1	Site Location and Description	. 2-1
	2.2	Site History	. 2-1
	2.3	Subsurface Assessment Findings	. 2-1
	2.4		
3.0	Pote	ential Exposure Pathways	. 3-1
	3.1	Soil	. 3-1
	3.2	Groundwater	. 3-1
	3.3	Vapor Intrusion	. 3-2
4.0	Ana	lysis of Soil Cleanup Alternatives	. 4-1
	4.1	Site Redevelopment Plans	. 4-1
	4.2	Potential Cleanup Alternatives	. 4-1
		4.2.1 No Action	
		4.2.2 Off Site Landfilling	
		 4.2.3 On Site Reuse with Performance Barriers and Limited Offsite Landfilling 4.2.4 Ex-Situ Thermal Treatment and Solidification/Stabilization 	
	4.0		
	4.3	Evaluation of Cleanup Alternatives	
		4.3.1 Evaluation Criteria	
		4.3.3 Comparative Results	
	4.4	Recommended Cleanup Alternative	. 4-5

AECOM, Inc. September 2009 Document No.: [Doc. No.]

i

List of Tables

- Table 1 Soil Analytical Results
- Table 2 Groundwater Field Data
- Table 3 Groundwater Analytical Results
- Table 4 Evaluation of Potential Soil Remedial Alternatives
- Table 5 Opinion of Probable Costs of Potential Soil Remedial Alternatives
- Table 6 Environmental Benefits of Green Remediation Best Management Practices
- Table 7 Summary of Sustainability Metrics

List of Figures

Figure 1 – Site Location Map

List of Drawings

- Drawing 2007-1 Monitoring Well and Soil Boring Location Diagram
- Drawing 2007-2 Fill Isopach
- Drawing 2007-3 Soil Analytical Results
- Drawing 2007-4 Groundwater Analytical Results

List of Appendices

Appendix A EPA Citizen's Guides

Appendix B Sustainability Evaluations Calculations

1.0 Introduction

On behalf of the City of Oshkosh, Wisconsin (City), AECOM, Inc. (AECOM) has prepared this Analysis of Brownfield Cleanup Alternatives (ABCA) for Redevelopment Parcel H located within the Marion Road/Pearl Avenue Redevelopment Area northwest of the intersection of Marion Road and Jackson Street in Oshkosh, Wisconsin (site). The Marion Road/Pearl Avenue redevelopment area is a former industrial riverfront corridor that essentially links the University of Wisconsin-Oshkosh campus to downtown Oshkosh. The Brownfield properties within the redevelopment area have significant redevelopment potential, but are hindered by the challenges related to environmental contamination and unsuitable nature of fill material to support surface features. The project site can be located on the attached Figure 1.

To attract redevelopment opportunities consistent with the prime location of the site, the City of Oshkosh Redevelopment Authority submitted an application for Brownfield redevelopment funding through the Wisconsin Department of Natural Resources Ready for Reuse program to offset the expenses related to environmental management of subsurface soils and waste fill material. Although this ABCA was prepared to evaluate cleanup alternatives for the entire area of Parcel H, the Ready for Reuse grant will specifically be applied to the planned redevelopment of the northern portion of Parcel H where planned development consists of an 11,670 square foot mixed use building and a 4,950 square foot office building.

2.0 Site Description and History

2.1 Site Location and Description

Parcel H is located northwest of the intersection of Marion Road and Jackson Street in the City of Oshkosh, Wisconsin. The site encompasses approximately 4.9 acres and is located in the Southeast ¼ of the Northeast ¼ of Section 23, Township 18 North, Range 16 East, in the City of Oshkosh, Winnebago County, Wisconsin. The site includes several former properties including Wisconsin Automated Machinery, Jackson Glass, Zion Eldercare, Hildebrandt Service Station, and Stadtmueller Manufacturing. The property is owned by the City and has street frontage along Marion Road and Jackson Street. Former industrial buildings that once occupied the site have been razed.

2.2 Site History

The individual parcels, collectively referred to as Parcel H, were historically used for a variety of industrial purposes dating back to at least 1890. Sanborn Fire Insurance (Sanborn) maps from the years 1890, 1903, 1949, and 1957 were reviewed. The 1890 Sanborn map indicates Radford Lumberyard was located on the west side of the subject property and the Williamson Lumberyard was located on the east side of the property. The 1903 Sanborn map indicates that a sash, door, and blind factory had replaced the Radford Lumberyard on the west side of the property. Three large drying kilns are depicted next to this factory. A lumberyard storage area is located on the east end of the property. Reliance Boiler Works is shown at the location between the former Zion Eldercare site (located to the south of the subject property) and the former Triangle Bar property (located to the southeast), where a parking lot is now located. The 1949 Sanborn map indicates that the Bell Machine Company occupied the west and east ends of the property. By 1949, the Reliance Boiler Works had been replaced by the Morrison Brass and Aluminum Foundry.

2.3 Subsurface Assessment Findings

Several subsurface investigations have been performed on the site to further characterize environmental conditions at Parcel H. Environmental sampling conducted on these parcels suggests that this area of the city has historically been the subject of uncontrolled fill deposits. The thickness of the fill generally ranges from about 5 feet to over 10 feet. This fill material typically includes wood waste, foundry sand, and organic material. Chemicals of concern characteristic of this fill material include polynuclear aromatic hydrocarbons (PAHs), Volatile Organic Compounds (VOCs) lead, and occasionally arsenic. Although many of the historical businesses that occupied these properties are no longer operating, the environmental issues of concern are generally characteristic of the fill material and are not related to the previous property owners or more recent manufacturing operations.

2.4 Subsurface Assessment Conclusions

Based on results of the subsurface assessments, concentrations of lead, arsenic and several PAH compounds represent a potential direct contact risk to human health. Additionally, VOCs (benzene, bromomethane, and trichloroethene) were detected in several soil samples at concentrations that represent a potential risk to groundwater quality. Because of the elevated lead, arsenic and PAHs, fill soils at the site should be managed as impacted material during site redevelopment and excess fill soils generated during redevelopment should be managed as solid waste. While not anticipated, fill materials may be considered a hazardous waste depending on specific chemical characteristics.

Groundwater quality is not expected to be impacted significantly and active groundwater remediation is not anticipated. If construction dewatering is necessary during redevelopment, discharge will be monitored and directed to the sanitary sewer.

3.0 Potential Exposure Pathways

3.1 Soil

Potential exposure pathways were evaluated by comparing analytical data collected at the site with Soil Cleanup Standards established under Chapter NR 720, Wisconsin Administration Code. These standards were established for the remediation of soil contamination, which result in restoration of the environment to the extent practicable; minimize harmful effects to the air, lands, and waters of the state; and are protective of public health, safety and welfare, and the environment. These soil cleanup standards apply to all remedial actions taken by responsible parties to address soil contamination after an investigation has been conducted at a site that is subject to regulation.

Soil cleanup standards are established based on one of the following controlling criteria:

- 1) Soil quality that would cause a violation of a groundwater quality standards;
- 2) An impact on soil quality or groundwater quality that would cause a violation of a surface water quality standard contained on Chapters NR 102 to 106,
- 3) Soil quality that would cause a violation of an air quality standard contained in Chapters NR 400 to 499, and
- 4) Soil quality that represents a risk to human health as a result of direct contact, including ingestion. The controlling criteria depend, in part, on the physical and toxicological characteristics of the chemicals of concern. For the chemicals of concern identified at the site, non-industrial direct contact Residual Contaminate Levels (RCLs) were used as soil cleanup objectives for this site.

Based on soil analytical results from previous subsurface investigations at the site, a potential exposure pathway for direct contact exists at the site. Drawing 2007-3 indicates soil sample locations and corresponding soil analytical test results.

3.2 Groundwater

Potential exposure pathways were evaluated by comparing analytical data collected at the site with Chapters NR 140 and NR 160 of the Wisconsin Administrative Code which establish groundwater quality standards for substances detected in or having a reasonable probability of entering the groundwater resources of the state. Two sets of standards are established: 1) enforcement standard (ES) and 2) Preventive Action Limit (PAL). The ES is a health-risk based concentration and when exceeded, usually results in further subsurface investigation, remedial action requirements, or monitoring. ES concentrations are generally based on federal drinking water quality standards. The PAL is typically established at 10% of the ES for substance with carcinogenic mutageneric or teratogenic properties. The PAL is established at 20% of the ES for substances of public health concern. Groundwater quality ES concentrations outlined in Chapter NR 140 represents groundwater cleanup criteria for this site.

Based on results of groundwater samples collected from monitoring wells installed on Parcel H, arsenic, lead, benzene, bromomethane, vinyl chloride, benzo(a)pyrene and/or benzo(b)fluoranthene concentrations exceed groundwater cleanup objectives at several locations. Drawing 2007-4 indicates locations of the monitoring wells and corresponding groundwater analytical test results. Results of groundwater monitoring suggest that impacts will not limit redevelopment of the site but groundwater will need to be managed properly during construction. Accordingly, this ABCA is limited to soil cleanup alternatives, with the understanding that by addressing impacted soil, the source of groundwater quality degradation will be mitigated and environmental closure can be granted.

3.3 Vapor Intrusion

Vapor intrusion or the migration of volatile chemicals from the subsurface into overlying buildings was evaluated for the site by comparing analytical data collected at the site with generic site specific screening levels (SSLs) calculated using the EPA Soil Screening Level website (<u>http://risk.lsd.ornl.gov/epa/ssl1.htm</u>). The EPA Risk Assessment Guidance website allows users to carry out algorithms to determine SSLs. The EPA website is linked to current toxicological data and chemical/physical properties for various compounds. EPA default values in the calculations were replaced with WDNR default values for non-industrial sites as outlined in WDNR guidance Document PUB-RR-682.

Due to the presence of biodegradable materials (i.e. wood) encountered in the fill soils at the site, the potential exists for methane gas to be generated during decomposition. Methane levels were measured in on-site groundwater monitoring wells by AECOM using a four-gas meter. Methane was not detected in the gas samples collected. Based on VOC concentrations in the groundwater near the proposed building and the potential for methane gas accumulation, vapor barriers and/or a passive vapor extraction system will be installed below the proposed building during redevelopment activities.

4.0 Analysis of Soil Cleanup Alternatives

4.1 Site Redevelopment Plans

The City Redevelopment Authority has executed a final development agreement with Oshkosh River Development, LLC for the redevelopment of Parcel H. Specifically, development plans for the site include a retail pharmacy, a mixed use commercial/residential building and an office building. Conceptual redevelopment plans for the site are indicated on the attached drawings. Oshkosh River Development anticipates initiating construction by mid-October 2009.

The City RDA proposes to implement corrective action concurrent with site redevelopment. In this manner, constructed features (i.e. buildings, parking areas, and landscape features) can be integral components of the remedy.

Four potential cleanup alternatives were selected for the site. These alternatives are subsequently discussed and EPA Citizen Guides, which provide general information on the different alternatives appended to this report.

4.2 Potential Cleanup Alternatives

4.2.1 No Action

The No Action Alternative would involve no remedial activities at the site and leave the site in its current condition. This alternative is not practical because it constrains and potentially eliminates any practical redevelopment of this property.

4.2.2 Off Site Landfilling

The off-site landfilling alternative would involve the transfer of all impacted soil to an off-site licensed landfill. The impacted soil at the site would be excavated, temporarily stockpiled if necessary, loaded into trucks, and transported to a landfill. Backfill from off-site sources would be brought into the site to raise the grade following removal of impacted soils.

Under this alternative, the proposed building would be constructed over a conventional foundation. Building footings would be constructed to design depth and width along the perimeter and along load-bearing areas of the building footprint. All fill material generated during construction would be managed as a solid waste. Samples of fill would be collected and analyzed for waste characteristics, as necessary, to obtain landfill approval. Potential solid waste disposal facilities include Winnebago County Landfill or the Waste Management Valley Trail Landfill located in Berlin, Wisconsin.

4.2.3 On Site Reuse with Performance Barriers and Limited Offsite Landfilling

This alternative would involve reusing soil excavated during construction as fill material in other areas of the site, incorporating all alternative building foundation to reduce soil excavation, and utilizing performance barriers over impacted soils at the site to address direct contact concerns. It is anticipated that the excavation of impacted fill material will be primarily limited to the area below the proposed building to a depth of 3 feet below the current ground surface. The bulk of the remaining impacted soils are expected to be covered with imported fill material to raise grade of the site. Performance barriers would include the proposed senior apartment buildings, parking lot, and imported soil fill in landscaped areas. Performance barriers that do not consist of hardscape (pavement or building components) will be constructed with an engineered barrier consisting of a geotextile warning layer, 6 inches of clean soil, and at least 6 inches of topsoil. The barriers

would substantially reduce the potential for the public or site occupants to come into contact with the underlying impacted soil. Off-site landfilling may be required for excess impacted soils that would be excavated during construction and could not be reused on site due to space or structural suitability limitations.

Under this alternative, the building would be constructed over an alternative foundation, likely a deep pile or aggregate pier foundation. As indicated on the fill Isopach map, there may be over 10 feet of fill in some areas below the building footprint. Use of an alternative foundation would allow most of the material to stay in place and the building would essentially span the impacted soil. The cost of the deep foundation exceeds that of the conventional foundation in the previous alternative; however, this cost is offset by the reduced volume of soil, which would require transportation and landfilling.

4.2.4 Ex-Situ Thermal Treatment and Solidification/Stabilization

The ex-situ thermal treatment and solidification/stabilization alternative would involve combining two remediation technologies to address the different types of contaminants identified at the site. Ex-situ thermal treatment technology consists of incinerating impacted soil that has been excavated from the site to treat organic contaminants. An air pollution control typically treats the incinerator off gases.

Because thermal treatment does not treat inorganic compounds (metals), the incinerated soil would also be required to undergo solidification/stabilization to address lead impacts detected at the site. Stabilization involves altering contaminants to a less harmful or less mobile state. Solidification binds the impacted soil to prevent future migration of contaminants. Treatability studies are generally required to determine if soils are compatible with these technologies.

Under this alternative, soil would be excavated from the site and transported to and stockpiled at on-site or nearby location for incineration. Impacted soil would be loaded into high temperature incinerator(s) for treatment. Incinerated soil would then be stockpiled for solidification/stabilization. The solidification/ stabilization process would include conveying the incinerated soil into a weight feeder, followed by a homogenizer where the soil would be mixed with water, followed by a pug mill where the soil would be mixed with a reagent. Treated soil would be would be reused on site as fill material.

4.3 Evaluation of Cleanup Alternatives

4.3.1 Evaluation Criteria

Potential cleanup alternatives to mitigate the risk to human health and environment due to chemical characteristics of the subsurface fill material present throughout the redevelopment site were comparatively evaluated based on the following criteria:

- Technical simplicity
- Effectiveness in protecting human health and the environment
- Cost of implementation including costs related to long-term monitoring or any operating and maintenance costs
- Implementation schedule

Each alternative was compared to the evaluating criteria and a numerical score assigned. Results of comparative scoring are summarized on Table 1. On the basis of technical simplicity, all alternatives rated equal with the exception of the ex-situ thermal treatment and solidification/stabilization alternative. In terms of effectiveness and protecting human health and the environment, the No Action Alternative rated lowest while the other three alternatives were equally effective. Arguably, ex-situ thermal treatment/stabilization and the use of performance barriers may not be as effective as off-site landfilling. Under the landfilling alternatives,

impacted fill material would be excavated and removed from site; while with the other two alternatives, engineering controls or chemical treatment are being used to reduce direct contact and environmental risk while leaving material in place.

A summary of probable costs related to each of the cleanup alternatives is summarized on Table 2. Cost information presented on Table 2 is intended to be used for comparative purposes only and does not represent a formal budget to implement a specific alternative. The costs summarized on Table 5 were calculated based on the entire Parcel H redevelopment plan. Actual costs will depend on details of site development plans including grading plans, pavement plans, utilities, and landscaping. Economically, the No Action Alternative could be implemented for the least cost; however, from a broader perspective, without implementing corrective action, the former industrial property could not be redeveloped and the economic benefit related to improved property value and public access to the waterfront would not be realized. Costs are largely controlled by the volume of fill material that must be treated or landfilled at an off-site location. Based on the anticipated volume of soil generated under each cleanup alternative, on-site reuse of soil with performance barriers and limited off-site landfilling appears to be the least expensive alternative. That alternative includes implementing a cap maintenance plan to maintain the condition of the parking lot and other performance barriers. Cap maintenance plans for the purposes of environmental remediation should be consistent with building and grounds maintenance commonly practiced for a development such as this.

The anticipated schedule to implement each of the cleanup alternatives will depend, in part, on the volume of soil required to be excavated and transported off site or treated prior to reuse. We anticipate that off-site landfilling, which largely consists of mass excavation and backfilling, could be accomplished in less time than constructing performance barriers and limiting off-site landfilling. Excavation and landfilling would largely occur prior to any significant construction effort while performance barriers would be constructed concurrent with other site improvements. Ex-situ thermal treatment and solidification/stabilization is expected to take longer than excavation and landfilling due to the time required to mobilize specialty thermal and mixing equipment.

4.3.2 Green Remediation Criteria

Green Remediation is defined by the US EPA as the practice of considering all environmental effects of remedy implementation and incorporating options to maximize net environmental benefit of cleanup actions. Green Remediation focuses on establishing and utilizing management practices which consider the broader impact of proposed environmental mitigation, including societal benefits, while preserving the effectiveness of the selected remedy. The following six core elements of green remediation have been established by the US EPA:

- 1. Minimize total energy use and maximum use of renewable energy
- 2. Minimize air pollutants and greenhouse gas emissions
- 3. Minimize water use and impacts to water resources
- 4. Optimize future land use and enhance ecosystem
- 5. Reduce, reuse, and recycle materials of waste
- 6. Optimize sustainable management practices during stewardship

In general, these green remediation core elements have been established to evaluate the net environmental impact of remediation by recognizing collateral impact to air, water, land, and social systems. Potential management practices, which can be included as elements of proposed cleanup alternatives, are summarized on Table 6 along with the relative implementation difficulty and the corresponding relationship to each green remediation core element. As indicated on Table 6, there are several practices that could be employed or modified to enhance green remediation concepts. Some of these practices may influence other evaluation

criteria such as technical practicability, effectiveness, cost, and implementation schedule. Occasionally, practices have competing influences on core elements and other evaluation criteria. For example, the use of low sulfur diesel fuel will reduce air emissions but may increase total energy usage and total project cost.

Green remediation criteria were also evaluated utilizing a sustainability metric evaluation tools. The US Air Force's Sustainable Remediation Tool (SRT) was used to compare remediation approaches on the basis of sustainability metrics. The tool allows users to estimate sustainability metrics for specific remedial action technologies. The SRT was used to compare off-site landfilling of all impacted fill material versus limited off-site landfilling associated with on-site reuse and performance barriers. The SRT quantifies carbon dioxide emissions to the atmosphere, energy consumption, technology cost, and safety/accident risk. An AECOM developed sustainability tool (LDW) was used to evaluate the thermal treatment technology. The LDW tool quantifies air emissions, safety/accident risk, and energy consumption.

Both the SRT and LDW tools utilize similar computational approaches. Estimated carbon dioxide emissions are calculated from emissions factors for specific equipment and processes along with estimated activity data such as hours of operation. These worksheets include emissions factors and activity data for three different types of sources; Stationary Internal combustion, Stationary external combustion and mobile combustion. Safety/accident risk results are based on workplace accident rates provided by the U.S. Department of labor (Industry Injury and Illness Data, 2007 – Supplemental News Release Table SNR05). Energy consumption results are based on the average heating value for diesel fuel and the amount of diesel fuel consumed during each activity. The sustainability metrics were calculated for the entire Parcel H redevelopment. Results of the sustainability metric evaluation are summarized in Table 7 and details are provided in Appendix B of this report.

Results of the sustainability metric evaluation along with the qualitative evaluation summarized in Table 6 were used to score each of the green remediation core elements relative to proposed corrective action alternatives. These comparative scores are provided in Table 4. As indicated in Table 4, the green remediation criteria are weighted such that collectively, the green remediation criteria have the same influence as each of the other feasibility criteria.

4.3.3 Comparative Results

As discussed previously, the No Action Alternative is not considered practical because it does not prepare the site for redevelopment or achieve the objectives of the City and other stakeholders.

The off-site landfilling alternative would remove the bulk of the impacted soil from the site, thereby reducing risk to the public and environment. A licensed landfill (Winnebago County Landfill) is located approximately 5 miles north of the site. The proximity of the landfill to the site reduces trucking costs and associated air emissions from the trucks. Disadvantages of off-site landfilling the entire mass of impacted soils at the site include high costs, fugitive air emissions during operations, and potential community concerns regarding trucking large quantities of impacted soil through downtown Oshkosh.

The on-site reuse with performance barriers and limited off-site landfilling alternative would address hazards to the public and environment at the site. This alternative would reduce soil excavation and off-site landfilling activities, thereby reducing air emissions. Performance barriers will be required to address direct contact issues with the impacted soils. These barriers will require future maintenance.

The ex-situ thermal treatment and Solidification/Stabilization alternative would address hazards to the public and environment at the site. The disadvantages of this alternative include high costs and relatively long implementation time. Thermal treatment is generally more cost-effective when treating hazardous waste, which has not been identified at the site.

4.4 Recommended Cleanup Alternative

The on-site reuse with performance barriers and limited off-site landfilling alternative is the preferred remedy for achieving environmental closure at Parcel H due to the effectiveness, implementation feasibility, green remediation rating, and cost. This alternative consists of managing as much of the impacted fill material on site as practical and disposing the remainder of the material at a licensed solid waste landfill. A key element of this alternative is the use of an alternative foundation for the proposed structures; a foundation that would allow most of this material to remain in place. The alternative foundation would likely consist of driven piles or aggregate piers. This foundation system will have the greatest impact to limit the volume of solid waste removed from the site. Additionally, site grading plans, utility plans and paving plans should be prepared recognizing the characteristics of the fill materials. Landscaping berms, stormwater infiltration areas, and other greenspace areas should incorporate the fill material to the extent practical. Utility corridors should include barriers where they enter and exit the site to control potential vapor migration through the granular backfill. To the extent the fill material can be used as structural fill, it should be considered to raise grades below parking areas and other proposed pavement. The use of performance barriers, alternative foundations and limited landfilling supports the core elements of green remediation largely because components of the environmental remedy leverage site improvements and infrastructure needs of the new development.

Tables

- Table 1Soil Analytical Results
- Table 2
 Groundwater Field Data
- Table 3
 Groundwater Analytical Results
- Table 4
 Evaluation of Potential Soil Remedial Alternatives
- Table 5Opinion of Probable Costs of Potential Soil Remedial
Alternatives
- Table 6Environmental Benefits of Green Remediation Best
Management Practices
- Table 7
 Summary of Sustainability Metrics

				NR 746 Soil	SE	3-1	UP-	SB-6	JG-S	B-1		SB-2		SB-3	PH-SB-4	UP SB6	UP SB7	MM	-1	HA-4A	HA-4B
		Generic RCLs		Screening					SO2	SO3	SO2	SO3	SO2	SO3	SO2	SO2	SO2				
		tact Pathway	Groundwater	Depth	0 - 2' 4/4/2002	4 - 6'	2.5 - 4.5'	2.5 - 4.5'	2.5'-4.5' 8/20/2002	5.0'-7.0'	2.5 - 4.5' 8/20/2002	5.0 - 7.0' 8/20/2002	2.5 - 4.5' 8/20/2002	5.0 - 7.0' 8/20/2002	 7/17/2007	2.5'-4.5' 6/11/2002	2.5'-4.5' 6/11/2002	0-2' 4/4/2002	4'-6' 4/4/2002	0'-2' 6/12/2002	2'-4' 6/12/200
irameters	Non-Industrial	Industrial	Pathway	Levels	4/4/2002	4/4/2002	6/11/2002	6/11/2002	8/20/2002	8/20/2002	0/20/2002	0/20/2002	6/20/2002	0/20/2002	1/1//2007	0/11/2002	0/11/2002	4/4/2002	4/4/2002	0/12/2002	0/12/200
etals (mg/kg)																	1.00			NA	NA
Antimony	F				NA	NA	<1.42	<1.38	1.95 B	1.89	<1.4	<1.46	<1.57	<1.42	NA	<1.42	<1.38	NA	NA 1.1 ^B		NA
Arsenic	0.039	1.6 ^E	0.58		6.1 ^B	0.98 ^C	3.27 ^B	3.11 ^B	3.44 ^в	4.15	4.13 ^B	3.34 ^B	3.18 ^B	5.22 ^B	NA	3.27 ^B	3.11 ^B	10 ^B		NA	
Barium	3,130	2.4 x 10 ⁵ _	3,300		NA	NA	105	92.8	75	147	142	156	122	178	NA	105	92.8	NA	NA	NA	NA
Cadmium	8.0 ^E	510 ^E	1.5		3.8 [°]	1.4	0.0904	0.0966	0.213	0.092	0.347	0.121	0.642	0.21	NA	0.0904	0.0966	3.2	<1.2	NA	NA
Chromium	16,000 ^E	1.53 x 10 ⁶			NA	NA	41.5 ^C	33.8 ^C	22.1	42.7	42 ^c	46.2 ^C	2806 ^C	40.2 ^C	15.7 ^C	41.5	33.8	NA	NA	NA	NA
Copper					NA	NA	23.8	20.2	23.4	36.3	35.8	36.9	38.2	41.4	NA	23.8	20.2	NA	NA	NA	NA
Lead	50 ^E	500 ^E			186 [^]	10	10. 1	15.9	31.3	7.91	13.6	10.7	15	8.26	NA	10.1	15.9	454 ^	10	193 ^	49
Selenium	78.2	5,110	1.0		NA	NA	<0.775	<0.753	<0.705	<0.705	<0.763	<0.766	<0.858	<0.773	NA	<0.775	<0.753	NA	NA	NA	NA
Silver	78.2	5,110	1.67		NA	NA	<0.129	<0.125	<0.118	<0.13	<0.127	<0.133	<0.143	<0.129	NA	<0.129	<0.125	NA	NA	NA	NA
Mercury			0.42		NA	NA	0.129	0.0715	0.153	0.029	0.0433	0.0345	0.0815	0.0219	NA	0.129	0.0715	NA	NA	NA	NA
Nickel				 	NA	NA	21.8	20.3	15.6	28	27.7	32.4	17	28	NA	21.8	20.3	NA	NA	NA	NA
Cs (µg/kg)										1											
Benzene	1,100 ^E	52,000	5.5 ^E	8,500	NA	NA	<25	<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	<25	<25	NA	NA	NA	NA
1,2-Dichlorobenzene	1,410,000	92,000,000	1,800		300	<25	<25	<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	<25	<25	<25	<25	NA	NA
p-lsopropyltoluene	1,410,000	02,000,000			<250	<25	<25	<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	<25	<25	26	<25	NA	NA
Naphthalene	60,000 ^E	4.000.000 ^E	400 ^E	2,700	510 °	<25	<25	<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	<25	<25	78	<25	NA	NA
Toluene	1,250,000	81,800,000	1,500 ^E	38,000	<250	<25	<25	<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	<25	<25	42	<25	NA	NA
				36,000	<200	<20	<50	<20	<25 <25	<25	<0.20	<0.25	<0.25	<0.20	NA	<25	<25	46	<50	NA	NA
Total Trimethylbenzene	782,000	51,100,000	7,573		<500	<00	<50	<50	<20	<25	<0.50	<0.50	<0.50	<0.50	NA I	<20	~25	40	<00	NA.	
Hs (µg/kg) ^F																					
Acenaphthene	900.000	60,000,000	38,000		<410	<41	<6.07	119	27.6	<6.1	<5.98	<6.23	<6.72	<6.72	NA	<6.07	119	230	<41	NA	NA
Acenaphthylene	18,000	360,000	700		850 ^C	<42	<8.53	<82.8	38.8	<8.56	<8.40	<8.75	< 9.44	<9.44	NA	<8.53	82.8	470	<42	NA	NA
Anthracene	5,000,000	300,000,000	3,000,000		1400	< 34	<1.29	1480	21.5	<1.3	8.27	<1.33	14.2	14.2	NA	<1.29	1480	1000	<34	NA	NA
Benzo(a)anthracene	88	3,900	17,000		2200 A	<54	70.7	2300 A	139 ^	<5.32	7.51	<5.44	<5.87	<5.87	NA	70.7	2300 ^	2500 ^	<54	NA	• NA
Benzo(a)pyrene	8.8	390	48.000		3600 ^B	<54 <59	133 [^]	2550 ^B	197 ^A	4.8	11.3 ^	7.3	7.58	7.66	NA	133 ^	2550 ^B	2500 ^B	<59	NA	NA
							133 113 ^A	2600 ^A	256 ^A	1		<2.79	4.15	4.15	NA	113 ^	2600 ^	1700 ^	<42	NA	NA
Benzo(b)fluoranthene	88	3,900	360,000		3400 ^	<42	-			<2.72	10.8	-				101	1960 ^	1800 ^	<82	NA	NA NA
Benzo(ghi)perylene	1,800	39,000	6,800,000		3500 ^	<82	101	1960 ^A	160	<2.72	11.2	<2.79	<3.0	<3.0	NA		1030 ^	2300 ^	<02 <79	NA	NA
Benzo(k)fluoranthene	880	39,000	870,000		3300 [^]	<79	4.39	1030 ^	12.3	<3.76	4.96	<3.85	<4.15	<4.15	NA	4.39					NA
Chrysene	8,800	390,000	37,000		2400	<38	53.2	1760	119	<2.89	6.36	<3.05	<3.29	<3.29	NA	53.2	1760	2500 8 10 10 10 10 10 10 10 10 10 10 10 10 10	<38	. NA	
Dibenzo(a,h,)anthracene	8.8	390	38,000		1200 ^B	<76	<1.81	1200 ^B	360 ^	<1.82	0.6	<1.86	8.01	8.01	NA	1.81	1200 ^B	640 ^B	<76	NA	N/
Fluroanthene	600,000	40,000,000	500,000		4900	<42	120	6610	316	<1.3	33.6	<1.33	<1.43	<1.43	NA	120	6610	5000	61	NA	N/
Fluorene	600,000	40,000,000	100,000		480	<41	5.3	546	4.58	<2.59	<2.54	<2.65	<2.86	<2.86	NA	5.3	546	570	<41	NA	N/
Indeno(1,2,3-cd)pyrene	88	3,900	680,000		2300 ^	<69	84.8	1580 ^	9.4	<2.08	11.1	4.11	2.86	2.86	NA	84.8	1580 ^	1500 ^	<69	NA	N/
1-Methylnaphthalene	1,100,000	70,000,000	23,000		600	<37	<4.52	<43.9	29.6	<4.54	<4.45	<4.64	<5.01	<5.01	NA	4.52	43.9	440	<37	NA	N/
2-Methylnaphthalene	600,000	40,000,000	20,000		<720	<72	<5.3	<51.4	38.3	<5.32	<5.22	<5.44	<5.87	<5.87	NA	5.3	56.4	530	<72	NA	N/
Naphthalene	20,000	110,000	400		470 ^c	<40	<2.07	130	17.6	<2.08	<2.04	<2.12	<5.87	<2.29	NA	2.07	130	560	<40	NA	N/
Phenanthrene	18,000	390,000	1,800		2400 ^C	<20	21.3	3590 ^C	76.5	<2.98	5.09	<3.05	<3.29	<3.29	NA	21.3	3590 ^C	3500	65	NA	N/
Pyrene	500,000	30,000,000	8,700,000		6400	<58	136	1590	407	<1.3	17.9	<1.33	<1.43	<1.43	NA	136	1590	5100	61	NA	N/

¹ Standards are for 1,2,4- and 1,3,5-Trimethylbenzene combined.

³ Standards are for Total PCBs.

^A Parameter exceeds NR 720 Generic RCL for Non-Industrial Direct Contact.

^B Parameter exceeds NR 720 Generic RCL for Industrial Direct Contact.

^C Parameter exceeds NR 720 Generic RCL for Groundwater Pathway.

^D Parameter exceeds NR 746 Table 1 Soil Screening Levels

^E Generic RCL is established under NR 720 or NR 746

^F Generic RCLs provided in *Soil Cleanup Levels for PAHs Interim Guidance*, WDNR RR-5 1997

-- No Generic RCL established.

Generic RCLs not included in Wisconsin Administrative Code or Guidance are calculated from the US EPA Soil Screening Level Web Page and the default values contained in *Determining Residual Contaminant Levels using the EPA Soil Screening Level Web Site* WDNR PUB-RR-682 on May 12, 2006

		Generic RCLs		NR 746 Soil Screening	SE 	3-1 	ZE-SB-1 SO1	ZE-SB-2 SO2	ZE-S	SB-5 SO5	UP-(SB-6
B		tact Pathway	Groundwater	Depth	0 - 2'	4 - 6'	0 - 2'	2 - 4'	0 - 2'	8 - 10'	2.5 - 4.5'	2.5 - 4.5'
Parameters	Non-Industrial	Industrial	Pathway	Levels	4/4/2002	4/4/2002	4/29/2002	4/29/2002	4/29/2002	4/29/2002	6/11/2002	6/11/2002
Metals (mg/kg)							05			4.00		
Antimony Arsenic	0.039 ^E	1.6 ^E	0.58		NА 6.1 ^в	NA 0.98 ^C	35 1.62 ^B	9.1 6.67 ^B	10 2.05 ^B	<1.29	<1.42	<1.38
Barium	3,130	2.4 x 10 ⁵	0.58 3,300		NA	0.98 NA	1.62 50	6.6/ 141	3.95 ⁶ 630	1.57	3.21	3.11
Cadmium	8.0 ^E	510 ^E	3,300		3.8 ^C	1.4	0.61	0.576	4.0 ^C	101 <0.0434	105 0.0904	92.8 0.0966
Chromium	16,000 ^E	1.53 x 10 ⁶			NA	NA	8.0 ^C	17 ^C	13 ^C	22 C	41.5 ^C	33.8 ^C
Copper					NA	NA	39	83	89	0.433	23.8	20.2
Lead	50 ^E	500 ^E			186 ^	10	95 [^]	397 ^	17000 ^B	5.0	10.1	15.9
Selenium	78.2	5,110	1.0		NA	NA	<0.766	<0.737	<0.979	<0.703	<0.775	<0.753
Silver	78.2	5,110	1.67		NA	NA	<0.128	0.172	<0.163	<0.703	<0.129	<0.125
Mercury			0.42		NA	NA	0.083	0.612	0.454 ^C	0.095	0.129	0.0715
Nickel					NA	NA	6.0	14	14	14	21.8	20.3
VOCs (µg/kg)	_		-									
Benzene	1,100 ^E	52,000	5.5 ^E	8,500	NA	NA	<25	89.6 °	<100	NA	<25	<25
Bromobenzene					NA	NA	<25	<25	<100	NA	<25	<25
Bromochioromethane	1.030	46,200	 0.24		NA	NA	NA 105	NA	NA	NA	NA	NA
Bromodichloromethane Bromoform	8,090	362,000	2.0		NA	NA NA	<25 NA	<25 NA	<100 NA	NA	<25 NA	<25
Bromomethane	21,900	1,430,000	2.0 4.0		NA NA	NA	NA	NA NA	NA	NA NA	NA	NA NA
sec-Butylbenzene	21,900	1,430,000	4.0		NA	NA	<25	42	<100		NA <25	<25
tert-Butylbenzene					NA	NA	<25	<25	<100	NA NA	<25 <25	<25 <25
Butylbenzene					<250	<25	<25	<25	<100	NA	<25	<25
Carbon tetrachloride	491	22,000	5.0		NA	NA	<25	<25	<100	NA	<25 <25	<25 <25
Chloroform	10,500	469,000	2.0		NA	NA	<25	<25	<100	NA	<25	<25
Chlorobenzene	313,000	20,400,000	150		NA	NA	<25	<25	<100	NA	<25	<25
Chloroethane	-				NA	NA	<25	<25	<100	NA	<25	<25
Chloromethane	4,910	220,000	1.0		NA	NA	<25	<25	<100	NA	<25	<25
2-Chlorotoluene	313,000	20,400,000			NA	NA	<25	<25	<100	NA	<25	<25
4-Chlorotoluene					NA	NA	<25	<25	<100	NA	<25	<25
1,2-Dibromo-3-chloropropane	46	2,040	0.1		NA	NA	<25	<25	<100	NA	<25	<25
1,2-Dibromoethane	31.9	1,430	0.033		NA	NA	<25	<25	<100	NA	<25	<25
Dibromomethane	156,000	10,200,000			NA	NA	NA NA	NA	NA	NA	NA	NA
Dibromochloromethane					NA	NA	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzene					NA	NA	<25	<25	<100	NA	<25	<25
1,4-Dichlorobenzene 1,2-Dichloroethane	2,660 702 [⊑]	119,000 31,400	110 4.9 ^E	 600	NA NA	NA NA	<25 <25	<25	<100	NA	<25	<25
1,2-Dichlorobenzene	1,410,000	92,000,000	4.9 1,800		300	<25	<25	<25 <25	<100 <100	NA NA	<25 <25	<25 <25
1,1-Dichloroethene	782,000	51,100,000	1,800	-	NA	NA	<25	<25	<100	NA	<25	<25 <25
cis-1,2-Dichloroethene	156,000	10,200,000	55		NA	NA	<25	<25	<100	NA	<25	<25 <25
Dichlorodifluoromethane	3,130,000	204,000,000	21,918		NA	NA	<25	<25	<100	NA	<25	<25
trans-1,2-Dichloroethene	313,000	20,400,000	98		NA	NA	<25	<25	<100	NA	<25	<25
1,2-Dichloropropane	939	42,100	1.9		NA	NA	<25	<25	<100	NA	<25	<25
1,1-Dichloroethane	3,130,000	204,000,000	349		NA	NA	<25	<25	<100	NA	<25	<25
1,3-Dichloropropane	313,000	20,400,000	1		NA	NA	<25	<25	<100	NA	<25	<25
2,2-Dichloropropane					NA	NA	<25	<25	<100	NA	<25	<25
1,1-Dichloropropene					NA	NA	NA	NA	NA	NA	NA	NA
cis-1,3-Dichloropropene					NA	NA	NA	NA	NA	NA	NA	NA
trans-1,3-Dichloropropene					NA	NA	NA	NA	NA	NA	NA	NA
Diisopropyl ether	6,260,000	409,000,000			NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	1,560,000	102,000,000	2,900 -	4,600	NA	NA	49.9	61.1	<100	NA	<25	<25
Trichlorofluoromethane	4,690,000	307,000,000	9,264		<250	<25	NA	NA	NA	NA	NA	NA
Hexachlorobutadiene	819	36,700			NA	NA	<25	<25	<100	NA	<25	<25
Isopropylbenzene p-Isopropyltoluene	_				NA <250	NA <25	<25 <25	33.2	<100	NA	<25	<25
Methylene chloride	8,520	382,000	1.6		<250 NA	<25 NA	<25 <25	41.9 <25	<100 <100	NA NA	<25	<25
Methyl-tert-butyl-ether	0,020	562,000			NA	NA	<25	<25	<100		<25 <25	<25
Naphthalene	60,000 ^E	4,000,000 €	400 ^E	2,700	510 [°]	<25	51.7	52.5	<100	NA NA	<25 <25	<25 <25
n-Propylbenzene					NA	NA	<25	<25	<100	NA	<25	<25 <25
Styrene	3,130,000	204,000,000	370		NA	NA	NA	NA	NA	NA	NA	NA
1,1,2,2-Tetrachloroethane	319	14,300	0.09		NA	NA	<25	<25	<100	NA	<25	<25
1,1,1,2-Tetrachloroethane	2,460	110,000	157		NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	1,230	55,000	4.1	·	NA	NA	<25	<25	<100	NA	<25	<25
Toluene	1,250,000	81,800,000	1,500 ^E	38,000	<250	<25	71.1	77.8	<100	NA	<25	<25
1,2,3-Trichlorobenzene		-			NA	NA	<25	<25	<100	NA	<25	<25
1,2,4-Trichlorobenzene	156,000	10,200,000	540		NA	NA	<25	<25	<100	NA	<25	<25
1,1,1-Trichloroethane	3,130,000	204,000,000	280		NA	NA	<25	<25	<100	NA	<25	<25
1,1,2-Trichloroethane	1,120	50,200	1.9		NA	NA	<25 702 C	<25 40.0 °	<100	NA	<25	<25
Trichloroethene Trichlorofluoromethane	160	7,150	3.7		NA	NA 25	19.3	43.5	<100	NA	<25	<25
1,2,3-Trichloropropane	9.12	409	0.0076		<250 NA	<25 NA	<25 NA	<25 NA	1700	NA NA	<0.25	<0.25
Total Trimethylbenzene	782,000	51,100,000	7,573		<500	NA <50	NA 45.2	144.3	NA <100	NA NA	NA <50	NA <50
Vinyl chloride	42.6	1,910	0.13		<500 NA	<50 NA	45.2 <25	144.3 <25	<100 <100	NA NA	<50 <25	<50 <25
Total Xylenes	3,130,000	204,000,000	4,100 ^E	42,000	<750	<75	129	82	<100	NA	<25	<25 <25
PAHs (µg/kg) ^F	1				· · · · · · · · · · · · · · · · · · ·	~						<u> </u>
Acenaphthene	900,000	60,000,000	38,000		<410	<41	<60	111	<76.7	NA	<6.07	119
Acenaphthylene	18,000	360,000	700		850 ^C	<42	<84.3	<81.1	<10.8	NA	<8.53	<82.8
Anthracene	5,000,000	300,000,000	3,000,000		1400	<34	122	<12.3	119	NA	<1.29	1480
Benzo(a)anthracene	88	3,900	17,000	-	2200 ^	<54	327 ^	1470 ^	313 ^	NA	70.7	2300 ^
Benzo(a)pyrene	8.8	390	48,000		3600 ^B	<59	290 [^]	1660 ^B	486 ^B	NA	133 ^A	2550 ^B
Benzo(b)fluoranthene	88	3,900	360,000		3400 ^	<42	506 ^A	1790 ^	530 ^A	NA	113 ^A	2600 ^
Benzo(ghi)perylene	1,800	39,000	6,800,000		3500 ^	<82	252	9510 ^	341	NA	101	1960 ^
Benzo(k)fluoranthene	880	39,000	870,000		3300 [^]	<79	227	7090 ^	212	NA	4.39	1030 ^
Chrysene	8,800	390,000	37,000		2400	<38	236	1430	290	NA	53.2	1760
Dibenzo(a,h,)anthracene	8.8	390	38,000		1200 ^B	<76	432 ^B	1330 ^B	99 ^A	NA	<1.81	1200 ^B
Fluroanthene	600,000	40,000,000	500,000		4900	<42	2150	6220	954	NA	120	6610
Fluorene	600,000	40,000,000	100,000		480	<41	<25.5	5090	53.2	NA	5.3	546
	88	3,900	680,000		2300 ^	<69	255 ^	1000 ^A	302 ^	NA	84.8	1580 ^
Indeno(1,2,3-cd)pyrene					600	<37	<44.7	2780	80.3	NA		1
Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene	1,100,000	70,000,000	23,000		000	~~/	NTT./	2/00	00.3	IN/A	<4.52	<43.9
Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene	600,000	40,000,000	20,000		<720	<72	<52.4	160	<66.9	NA	<4.52 <5.3	<43.9 <51.4
Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene	600,000 20,000	40,000,000 110,000	20,000 400		<720 470 ⁰	<72 <40	<52.4 41.9	160 213	<66.9 63	NA NA	<5.3 <2.07	<51.4 130
Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene	600,000	40,000,000	20,000		<720	<72	<52.4	160	<66.9	NA	<5.3	<51.4

Notes: Standards are for 1,2,4- and 1,3,5-Trimethylbenzene combined.

³ Standards are for Total PCBs.

^A Parameter exceeds NR 720 Generic RCL for Non-Industrial Direct Contact.

DRO = Diesel Range Organics GRO = Gasoline Range Organics VOCs = Volatile Organic Compounds

Parameter exceeds NR 720 Generic RCL for Industrial Direct Contact.

Parameter exceeds NR 720 Generic RCL for Groundwater Pathway.
 Parameter exceeds NR 746 Table 1 Soil Screening Levels
 Generic RCL is established under NR 720 or NR 746

F Generic RCLs provided in Soil Cleanup Levels for PAHs Interim Guidance, WDNR RR-5 1997

No Generic RCL established.
 Generic RCLs not included in Wisconsin Administrative Code or Guidance are calculated from the US EPA Soil Screening Level Web Page and the default values contained in *Determining Residual Contaminant Levels using the EPA Soil Screening Level Web Site* WDNR PUB-RR-682 on May 12, 2006

SVOCs = Semi-Volatile Organic Compounds PAHs = Polynuclear Aromatic Hydrocarbons PCBs = PolyChlorinated Biphenyls

				NR 746 Soil	WM-SB-2	JG-SI	B-1	.iG-	SB-2	JG-	SB-3	ZE-HA-1	ZE-HA-2	ZE-HA-3	ZE-HA-4	PH-SB-4
		Generic RCLs	0	Screening	SO1	SO2	SO3	SO2	\$O3	SO2	SO3	SO1	SO1	SO1	SO1	SO2
Parameters	Non-Industrial	tact Pathway Industrial	Groundwater Pathway	Depth Levels	0 - 2' 7/3/2002	2.5'-4.5' 8/20/2002	5.0'-7.0' 8/20/2002	2.5 - 4.5' 8/20/2002	5.0 - 7.0' 8/20/2002	2.5 - 4.5' 8/20/2002	5.0 - 7.0' 8/20/2002	1' 9/25/2002	1' 9/25/2002	1' 9/25/2002	1' 9/25/2002	7/17/2007
Metals (mg/kg)														0.0000	0.20,2002	
Antimony	_	_				1.95	1.89	<1.4	<1.46	<1.57	<1.42	NA	NA	NA	NA	NA
Arsenic Barium	0.039 ^E 3,130	1.6 ^E 2.4 x 10 ⁵	0.58 3,300		4.7 [₿] 67.1	3.44 ^B 75	4.15 147	4.13	3.34	3.18 ^B	5.22 ^B	NA	NA	NA	NA	NA
Cadmium	8.0 ^E	510 ^E	1.5	_	0.851	0.213	0.092	142 0.347	156 0.121	122 0.642	178 0.21	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium	16,000 ^E	1.53 x 10 ⁶			14.1 ^C	22.1	42.7	42 ^C	46.2 ^c	2806 ^C	40.2 ^c	NA	NA	NA	NA	15.7 °
Copper	TO E	500 E			NA	23.4	36.3	35.8	36.9	38.2	41.4	NA A	NA	NA	NA	NA
Lead Selenium	50 ^E 78.2	500 ^E 5,110			113 ^ <0.709	31.3 <0.705	7.91 <0.705	13.6	10.7 <0.766	15 <0.858	8.26 <0.773	80 ^ NA	26 NA	96 ^ NA	180 ^ NA	NA NA
Silver	78.2	5,110	1.67		<0.118	<0.118	<0.13	<0.127	<0.133	<0.143	<0.129	NA	NA	NA	NA	NA
Mercury			0.42		0.285	0.153	0.029	0.0433	0.0345	0.0815	0.0219	NA	NA	NA	NA	NA
Nickel					NA	15.6	28	27.7	32.4	17	28	NA	NA	NA	NA	NA
VOCs (µg/kg) Benzene	1,100 ^E	52,000	5.5 ^E	8,500	<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
Bromobenzene					<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
Bromochloromethane					NA	<25	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bromodichloromethane	1,030	46,200	0.24		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
Bromoform Bromomethane	8,090 21,900	362,000 1,430,000	2.0 4.0		NA NA	<25 <25	<25 <25	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
sec-Butylbenzene	-				<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
tert-Butylbenzene	-				<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
Butylbenzene					<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
Carbon tetrachloride Chloroform	491 10,500	22,000 469,000	5.0 2.0		<25 NA	<25 <25	<25 <25	<0.25 <0:25	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25	NA NA	NA NA	NA NA	NA NA	NA NA
Chlorobenzene	313,000	20,400,000	150		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA NA
Chloroethane	-		-		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
Chloromethane	4,910	220,000	1.0		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
2-Chlorotoluene 4-Chlorotoluene	313,000	20,400,000		-	<25 <25	<25 <25	<25	<0.25 <0.25	<0.25	<0.25 <0.25	<0.25	NA	NA	NA NA	NA	NA
4-Chlorotoluene 1,2-Dibromo-3-chloropropane		2,040	0.1		<25 <25	<25 <25	<25 <25	<0.25	<0.25 <0.25	<0.25	<0.25 <0.25	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dibromoethane	31.9	1,430	0.033		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA NA
Dibromomethane	156,000	10,200,000			NA	<25	<25	NA 🔨	NA	NA	NA	NA	NA	NA	NA	NA
Dibromochloromethane	1				NA 105	<25	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,3-Dichlorobenzene 1,4-Dichlorobenzene	2,660	119,000	110		<25 <25	<25 <25	<25 <25	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dichloroethane	702 ^E	31,400	4.9 ^E	600	<25 <25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA NA	NA	NA
1,2-Dichlorobenzene	1,410,000	92,000,000	1,800		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
1,1-Dichloroethene	782,000	51,100,000	10		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	156,000	10,200,000	55		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
Dichlorodifluoromethane trans-1,2-Dichloroethene	3,130,000 313,000	204,000,000 20,400,000	21,918 98		<25 <25	<25 <25	<25 <25	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25	NA NA	NA NA	NA NA	NA NA	NA NA
1,2-Dichloropropane	939	42,100	1.9		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
1,1-Dichloroethane	3,130,000	204,000,000	349		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
1,3-Dichloropropane	313,000	20,400,000			<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
2,2-Dichloropropane					<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
1,1-Dichloropropene cis-1,3-Dichloropropene				· · ·	NA NA	<25 <25	<25 <25	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
trans-1,3-Dichloropropene			-		NA	<25	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diisopropyl ether	6,260,000	409,000,000			NA	<25	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	1,560,000	102,000,000	2,900 ^E	4,600	44.7	<25	<25	<0.25	<0.25	`<0.25	<0.25	NA	NA	NA	NA	NA
Trichlorofluoromethane	4,690,000	307,000,000	9,264]	NA -05	<25	<25	NA	NA	. NA	NA	NA	NA	NA	NA	NA
Hexachlorobutadiene Isopropylbenzene	819	36,700			<25 <25	<25 <25	<25 <25	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25	NA NA	NA NA	NA NA	NA NA	NA NA
p-Isopropyltoluene	-				NA	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
Methylene chloride	8,520	382,000	1.6		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
Methyl-tert-butyl-ether	F	F	E		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
Naphthalene	60,000 ^E	4,000,000 *	400 ^e	2,700	64.9	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
n-Propylbenzene Styrene	3,130,000	204,000,000	370	-	<25 NA	<25 <25	<25 <25	<0.25 NA	<0.25 NA	<0.25 NA	<0.25 NA	NA NA	NA NA	NA NA	NA NA	NA NA
1,1,2,2-Tetrachloroethane	319	14,300	0.09		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
1,1,1,2-Tetrachloroethane	2,460	110,000	157	-	NA	<25	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	1,230	55,000	4.1 1 500 E	28,000	<25	<25	<25	NA	NA 10.05	NA 10.05	NA -0.0E	NA	NA	NA	NA	NA
Toluene 1,2,3-Trichiorobenzene	1,250,000	81,800,000	1,500 -	38,000	<25 <25	<25 <25	<25 <25	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25	<0.25 <0.25	NA NA	NA NA	NA NA	NA NA	NA NA
1,2,4-Trichlorobenzene	156,000	10,200,000	540		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA NA	NA NA	NA NA	NA NA
1,1,1-Trichloroethane	3,130,000	204,000,000	280		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	1,120	50,200	1.9		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
Trichloroethene Trichlorofluoromethane	160	7,150	3.7		<25 <25	<25 <25	<25 <25	<0.25	<0.25	<0.25	<0.25	NA NA	NA	NA	NA	NA
1,2,3-Trichloropropane	9.12	409	0.0076		<25 NA	<25 <25	<25 <25	<0.25 NA	<0.25 NA	<0.25 NA	<0.25 NA	NA NA	NA NA	NA NA	NA NA	NA NA
Total Trimethylbenzene	782,000	51,100,000	7,573		36.6	<25	<25	<0.50	<0.50	<0.50	<0.50	NA	NA	NA	NA	NA
Vinyl chloride	42.6	1,910	0.13		<25	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
Total Xylenes	3,130,000	204,000,000	4,100 ^E	42,000	31.7	<25	<25	<0.25	<0.25	<0.25	<0.25	NA	NA	NA	NA	NA
PAHs (µg/kg) ^F Acenaphthene	900,000	60,000,000	38,000	·	<1.8	27.6	<6.1	<5.98	<6.23	<6.72	<6.72	NA	NA	NA	NA	
Acenaphthylene	18,000	360,000	700		<1.6	38.8	<0.1	<5.98	<0.23	<0.72	<0.72	NA NA	NA NA	NA NA	NA NA	NA NA
Anthracene	5,000,000	300,000,000	3,000,000		97	21.5	<1.3	8.27	<1.33	14.2	14.2	NA	NA	NA	NA	NA
Benzo(a)anthracene	88	3,900	17,000		<1.0	139 ^A	<5.32	7.51	<5.44	<5.87	<5.87	NA	NA	NA	NA	NA
Benzo(a)pyrene Benzo(b)fluoranthene	8.8 88	390 3,900	48,000 360,000		<73	197 ^ 256 [^]	4.8	11.3	7.3	7.58	7.66	NA	NA	NA	NA	NA
Benzo(ghi)perylene	1,800	3,900	6,800,000		<1.2 <2.9	160	<2.72 <2.72	10.8 11.2	<2.79 <2.79	4.15 <3.0	4.15 <3.0	NA NA	NA NA	NA NA	NA NA	NA NA
Benzo(k)fluoranthene	880	39,000	870,000		<2.9	12.3	<3.76	4.96	<2.79	<3.0	<3.0 <4.15	NA NA	NA NA	NA NA	NA NA	NA NA
Chrysene	8,800	390,000	37,000	-	<0.73	119	<2.89	6.36	<3.05	<3.29	<3.29	NA	NA	NA	NA	NA
Dibenzo(a,h,)anthracene	8.8	390	38,000	-	<1.2	360 ^A	<1.82	0.6	<1.86	8.01	8.01	NA	NA	NA	NA	NA
Fluroanthene	600,000	40,000,000	500,000		500	316	<1.3	33.6	<1.33	<1.43	<1.43	NA	NA	NA	NA	NA
Fiuorene Indeno(1,2,3-cd)pyrene	600,000 88	40,000,000 3,900	100,000 680,000		<91 <1.0	4.58 9.4	<2.59 <2.08	<2.54	<2.65	<2.86	<2.86	NA NA	NA NA	NA NA	NA	NA
1-Methylnaphthalene	1,100,000	70,000,000	23,000		<1.0 31	9.4 29.6	<2.08 <4.54	11.1 <4.45	4.11 <4.64	2.86 <5.01	2.86 <5.01	NA NA	NA NA	NA NA	NA NA	NA NA
2-Methylnaphthalene	600,000	40,000,000	20,000		56	38.3	<5.32	<5.22	<5.44	<5.07	<5.01	NA NA	NA NA	NA NA	NA NA	NA NA
Naphthalene	20,000	110,000	400		49	17.6	<2.08	<2.04	<2.12	<5.87	<2.29	NA	NA	NA	NA	NA
Phenanthrene	18,000	390,000	1,800		300	76.5	<2.98	5.09	<3.05	<3.29	<3.29	NA	NA	NA	NA	NA
Pyrene	500,000	30,000,000	8,700,000		430	407	<1.3	17.9	<1.33	<1.43	<1.43	NA	NA	NA	NA	NA
Notes	1		1	I		L		1	1	1	1	I	<u> </u>	L	1	

Notes: ¹ Standards are for 1,2,4- and 1,3,5-Trimethylbenzene combined.

³ Standards are for Total PCBs.

A Parameter exceeds NR 720 Generic RCL for Non-Industrial Direct Contact.

^B Parameter exceeds NR 720 Generic RCL for Industrial Direct Contact.

DRO = Diesel Range Organics GRO = Gasoline Range Organics

VOCs = Volatile Organic Compounds SVOCs = Semi-Volatile Organic Compo

^c Parameter exceeds NR 720 Generic RCL for Groundwater Pathway.

- Parameter exceeds NR 746 Table 1 Soil Screening Levels
- ^E Generic RCL is established under NR 720 or NR 746
- ^F Generic RCLs provided in Soil Cleanup Levels for PAHs Interim Guidance , WDNR RR-5 1997
- -- No Generic RCL established.

•

Generic RCLs not included in Wisconsin Administrative Code or Guidance are calculated from the US EPA default values contained in *Determining Residual Contaminant Levels using the EPA Soil Screening Lev* SVOCs = Semi-Volatile Organic Compounds PAHs = Polynuclear Aromatic Hydrocarbons PCBs = PolyChlorinated Biphenyls

		Generic RCLs		NR 746 Soil Screening	PH-SB-5 SO5	PH-SB-6 SO4	PH-SB-7 SO4	PH-SB-8 SO4	PH-SB-9 SO4
		act Pathway	Groundwater	Depth					
Parameters Metals (mg/kg)	Non-Industrial	Industrial	Pathway	Levels	7/16/2007	7/17/2007	7/16/2007	7/18/2007	7/18/2007
Antimony					NA	NA	NA	NA	NA
Arsenic	0.039 ^E	1.6 ^E	0.58		0.842 ^C	<0.439	2.02 ^B	4.07 ^B	1.62 ^B
Barium	3,130	2.4 x 10 ⁵	3,300	·	NA	NA	NA	NA	NA
Cadmium	8.0 ^E 16,000 ^E	510 ^E	1.5		NA	NA	NA	NA	NA
Chromium Copper	16,000	1.53 x 10 ⁶			NA NA	NA NA	NA NA	NA NA	NA NA
Lead	50 ^E	500 ^E			9.89	9.5	8.68	7.3	8.43
Selenium	78.2	5,110	1.0		NA	NA	NA	NA	NA
Silver	78.2	5,110	1.67 0.42		NA NA	NA NA	NA NA	NA NA	NA
Mercury Nickel			0.42		NA	NA NA	NA	NA NA	NA NA
VOCs (µg/kg)	_		_						
Benzene	1,100 ^E	52,000	5.5 ^E	8,500	<10	<10	<10	<10	<10
Bromobenzene Bromochloromethane					<19 <11	<19 <11	<19 <11	<19 <11	<19 <11
Bromodichloromethane	1,030	46,200	0.24		<10	<10	<10	<10	<10
Bromoform	8,090	362,000	2.0		<10	<10	<10	<10	<10
Bromomethane	21,900	1,430,000	4.0	:	41.7 ^C	<17	<17	29.9 ^C	<17
sec-Butylbenzene tert-Butylbenzene					<19 <16	<19 <16	<19 <16	<19 <16	<19
Butylbenzene					<10	<22	<22	<10	<16 <22
Carbon tetrachloride	491	22,000	5.0		<8.0	<8.0	<8.0	<8.0	<8.0
Chloroform	10,500	469,000	2.0		<7.0	<7.0	<7.0	<7.0	<7.0
Chlorobenzene	313,000	20,400,000	150		<11	<11	<11	<11	<11
Chloroethane Chloromethane	4,910	 220.000			<24 <21	<24 <21	<24 <21	<24 <21	<24 <21
2-Chlorotoluene	313,000	20,400,000	1.0	-	<21 <14	<21 <14	<21 <14	<21 <14	<21
4-Chlorotoluene	-				<15	<15	<15	<15	<15
1,2-Dibromo-3-chloropropane	46	2,040	0.1		<31	<31	<31	<31	<31
1,2-Dibromoethane	31.9	1,430	0.033		<10	<10	<10	<10	<10
Dibromomethane Dibromochloromethane	156,000	10,200,000			<7.0 <12	<7.0 <12	<7.0 <12	<7.0 <12	<7.0 <12
1,3-Dichlorobenzene	-				<12	<12	<12	<12	<12 <12
1,4-Dichlorobenzene	2,660	119,000	110		<13	<13	<13	<13	<13
1,2-Dichloroethane	702 ^E	31,400	4.9 ^E	600	<9.0	<9.0	<9.0	<9.0	<9.0
1,2-Dichlorobenzene 1,1-Dichloroethene	1,410,000 782,000	92,000,000 51,100,000	1,800 10		<15	<15	<15	<15	<15
cis-1,2-Dichloroethene	156,000	10,200,000	55		<14 <14	<14 <14	<14 <14	<14 <14	<14 <14
Dichlorodifluoromethane	3,130,000	204,000,000	21,918		<14	<14	<14	<14	<14
trans-1,2-Dichloroethene	313,000	20,400,000	98		<19	<19	<19	<19	<19
1,2-Dichloropropane	939	42,100	1.9		<14	<14	<14	<14	<14
1,1-Dichloroethane 1,3-Dichloropropane	3,130,000 313,000	204,000,000 20,400,000	349		<11 <9.0	<11 <9.0	<11 <9.0	<11 <9.0	<11 <9.0
2,2-Dichloropropane					<9.0	<8.0	<8.0	<8.0	<9.0
1,1-Dichloropropene					<25	<25	<25	<25	<25
cis-1,3-Dichloropropene	-				<8.0	<8.0	<8.0	<8.0	<8.0
trans-1,3-Dichloropropene		400.000.000			<9.0	<9.0	<9.0	<9.0	<9.0
Diisopropyl ether Ethylbenzene	6,260,000 1,560,000	409,000,000	 2,900 ^E	 4,600	NA <13	NA <13	NA <13	NA 12	NA 12
Trichlorofluoromethane	4,690,000	307,000,000	9,264		NA	NA	NA	<13 NA	<13 NA
Hexachlorobutadiene	819	36,700			<11	<11	<11	<11	<11
Isopropylbenzene					<13	<13	<13	<13	<13
p-lsopropyltoluene Methylene chloride	8,520	382,000	1.6		82 °	NA 66.7 ^C	07 ^С	89.7 ^C	015 (
Methyl-tert-butyl-ether					<22	<22	<22	<22	81.5 [°]
Naphthalene	60,000 ^E	4,000,000 ^E	400 ^E	2,700	<7.0	<7.0	<7.0	<7.0	<7.0
n-Propylbenzene					<12	<12	<12	<12	<12
Styrene	3,130,000	204,000,000	370		<11	<11	<11	<11	<11
1,1,2,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane	319 2,460	14,300 110,000	0.09		<14 <16	<14 <16	<14 <16	<14 <16	<14 <16
Tetrachloroethene	1,230	55,000	4.1		<10	<10	<10	<16	<16
Toluene	1,250,000	81,800,000	1,500 ^E	38,000	<12	<12	<12	<12	<12
1,2,3-Trichlorobenzene		-			<23	<23	<23	<23	<23
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	156,000 3,130,000	10,200,000 204,000,000	540 280		<24 <8.0	<24	<24	<24	<24
1,1,2-Trichloroethane	1,120	50,200	1.9		<8.0 <9.0	<8.0 <9.0	<8.0 <9.0	<8.0 <9.0	<8.0 <9.0
Trichloroethene	160	7,150	3.7		<8.0	<8.0	<8.0	<8.0	<8.0
Trichlorofluoromethane					NA	NA	NA	NA	NA
1,2,3-Trichloropropane	9.12	409	0.0076	-	<10 -20	<10	<10	<10	<10
Total Trimethylbenzene Vinyl chloride	782,000 42.6	51,100,000 1,910	7,573 0.13		<29 <8.0	<29 <8.0	<29 <8.0	<29 <8.0	<29 <8.0
Total Xylenes	3,130,000	204,000,000	4,100 ^E	42,000	<8.0 <34	<8.0	<8.0	<8.0	<8.0 <34
PAHs (µg/kg)									•
Acenaphthene	900,000	60,000,000	38,000	-	<7.0	<6.2	<6.0	<5.6	<6.7
Acenaphthylene Anthracene	18,000 5,000,000	360,000 300,000,000	700 3,000,000		<9.8 <4.7	<8.7 <4.2	<8.5	<7.8	<9.4
Benzo(a)anthracene	88	3,900	17,000		<4.7 <6.1	<4.2 <5.4	<4.1 <5.3	<3.8 5.1	<4.8 <5.8
Benzo(a)pyrene	8.8	390	48,000		<3.4	<3.0	<3.0	<2.7	<3.3
Benzo(b)fluoranthene	88	3,900	360,000		<3.1	7.1	<2.7	4.8	5.2
Benzo(ghi)perylene Benzo(k)fluoranthene	1,800 880	39,000 39,000	6,800,000 870,000	-	<5.9	<5.3	<5.1	6.8	11.2
Chrysene	8,800	39,000	37,000		<4.3 <3.4	<3.8 <3.0	<3.7 <3.0	<3.4 7.0	<4.1 6.0
Dibenzo(a,h,)anthracene	8.8	390	38,000	-	<4.0	<3.6	<3.5	<3.2	<3.8
Fluroanthene	600,000	40,000,000	500,000		<3.9	<3.4	<3.3	10.9	7.3
Fluorene	600,000	40,000,000	100,000		<4.9	<4.4	<4.2	<3.9	<4.7
Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene	88 1,100,000	3,900 70,000,000	680,000 23,000		<3.3	<2.9	<2.8	5.4	5.6
2-Methylnaphthalene	600,000	40,000,000	23,000 20,000		<5.5 <6.1	<4.9 <5.4	<4.8 <5.3	<4.4 <4.9	<5.3 <5.8
Naphthalene	20,000	110,000	400	-	<6.8	<5.4	<5.3 <5.9	<4.9 <5.4	<5.8 <6.6
Phenanthrene	18,000	390,000	1,800		<6.1	<5.4	<5.3	12.4	<5.8
Pyrene	500,000	30,000,000	8,700,000		<4.2	<3.7	<3.6	5.1	<4.0

¹ Standards are for 1,2,4- and 1,3,5-Trimethylbenzene combined.

³ Standards are for Total PCBs.

A Parameter exceeds NR 720 Generic RCL for Non-Industrial Direct Contact. ^B Parameter exceeds NR 720 Generic RCL for Industrial Direct C

DRO = Diesel Range Organics GRO = Gasoline Range Organics VOCs = Volatile Organic Compounds

^c Parameter exceeds NR 720 Generic RCL for Groundwater Pathway.

^D Parameter exceeds NR 746 Table 1 Soil Screening Levels

^E Generic RCL is established under NR 720 or NR 746

F Generic RCLs provided in Soil Cleanup Levels for PAHs Interim Guidance, WDNR RR-5 1997

-- No Generic RCL established.

Generic RCLs not included in Wisconsin Administrative Code or Guidance are calculated from the US EPA default values contained in Determining Residual Contaminant Levels using the EPA Soil Screening Lev-

SVOCs = Semi-Volatile Organic Compounds PAHs = Polynuclear Aromatic Hydrocarbons PCBs = PolyChlorinated Biphenyls

T200701841-TABLE-1-PARCEL-H-SOIL.XLS

TABLE 1 SOIL ANALYTICAL RESULTS - DETECTED ANALYTES PROPOSED PHARMACY FORMER WISCONSIN AUTOMATED MACHINERY OSHKOSH, WISCONSIN

		Generic RCLs		Inhalation of Volatiles Soil Screening	NR 746 Soi Screening Levels	SO1 0 - 2'	ZE-SB-2 SO2 2 - 4'	ZE- SO1 0 - 2'	SB-5 SO5 8 - 10'	WM-SB-2 SO1 0 - 2'	ZE-HA-1 SO1 1'	ZE-HA-2 SO1 1'	ZE-HA-3 SO1 1'	ZE-HA-4 SO1 1'	В- 2-4'	-1 8-10'	B-2 2-4'	 2-4'	-3 	2-4' B-4	4 8-10'	B-5 0-2'	- 0-2'	-6 — 6-8'	B-: 0-2'		B-8 2-4'	B-9 2-4'	B-10 2-4'	2-4'	11 8-9.5'	B-12 - 2-4'	PH-SB-5 SO5 -	PH-SB-6 SO4	PH-SB-7 SO4 	PH-SB-8 PH-SB-9 SO4 SO4
Parameters	Non-Industria	al industrial	Pathway	Levels		4/29/2002	4/29/2002	4/29/2002	4/29/2002	7/3/2002	9/25/2002	9/25/2002	9/25/2002	9/25/2002	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	2003	7/16/2007	7/17/2007	7/16/2007	7/18/2007 7/18/2007
Metals (mg/kg) Antimony						35	9.1	10	<1.29	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Arsenic	0.039	E 1.6	0.58			1.62 8	6.67 ^B	3.95 ^B	1.37 °	4.7 ^B	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.842 C	<0.439	2.02 8	4.07 ^B 1.62 ^B
Barium	3,130	2.4 x 10 ⁵	3,300	-		50	141	630	101	67.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Cadmium	8.0	E 510 E	E 1.5			0.61	0.576	4.0 ^c	<0.0434	0.851	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Chromium	16,000	^E 1.53 x 10 ⁶	0.36	-	-	8.0 ^C	17 °	13 ^c	22 ^C	14.1 ^C	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Copper	-		-		-	39	83	89	0.433	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Lead Selenium	50 78.2	E 500 E 5,110	1.0	1 -	-	95 ^	397 ^	17000 ^B <0.979	5.0	113 ^ <0.709	80 ^	26	96 NA	160 ^ NA	110 ^ NA	7.7 NA	110 ^ NA	65 ^ NA	10 NA	97 ^ NA	32 NA	120 ^ NA	93 ^ NA	120 ^ NA	230 ^ NA	7.2 NA	84 ^ NA	83 ^ NA	84 ^ NA	42 NA	9.9 NA	14 NA	9.89 NA	9.5 NA	8.68 NA	7.3 8.43 NA NA
Silver	78.2	5,110	1.67	1 -	1 -	<0.766 <0.128	<0.737 0.172	<0.979	<0.703 <0.703	<0.109	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Mercury	-	-	0.42	4,000		0.083	0.612	0.454 C	0.095	0.285	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Nickel	-	-				6.0	14	14	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Detected VOCs (µg/kg)		-													NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				
Benzene	1,100	52,000	5.5 ^E	170 ^v	8,500	<25	89.6 °	<100	NA	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<10	<10	<10	<10 <10
Bromomethane	21,900	1,430,000	4.0	4,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	41.7 ^c <19	<17 <19	<17 <19	29.9 ^c <17 <19 <19
sec-Butylbenzene	1,560,000	102,000,000	- E	V	4 600	<25	42	<100	NA	<25	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	<13	<13	<13	<13 <13
Ethylbenzene Isopropylbenzene	1,000,000	102,000,000	2,900	2,200,000 V	4,600	49.9 <25	61.1 33.2	<100 <100	NA NA	44.7 <25	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	<13	<13	<13	<13 <13
p-lsopropyltoluene	1 -	-				<25	41.9	<100	NA	<25 NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Methylene chloride	8,520	382,000	1.6	2,700		<25	<25	<100	NA	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82 ^C	66.7 ^C	67 ^C	89.7 ^C 81.5 ^C
Naphthalene	60,000	4,000,000 E	400 ^E	68,000 V	2,700	51.7	52.5	<100	NA	64.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<7.0	<7.0	<7.0	<7.0 <7.0
Toluene	1,250,000	81,800,000	1,500 ^E	8,200,000 V	38,000	71.1	77.8	<100	NA	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<12	<12	<12	<12 <12
Trichloroethene	160	7,150	3.7	14		79.3	49.9 ^{cv}	<100	NA	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<8.0	<8.0	<8.0	<8.0 <8.0
Trichlorofluoromethane	-	-	-	410,000	- 1	<25	<25	1700	NA	<25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Γ NA	NA	NA	NA	NA	NA NA <29 <29
Total Trimethylbenzene	782,000	51,100,000	7,573			45.2	144.3 82	<100	NA	36.6	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	<29 <34	<29 <34	<29 <34	<29 <29 <34 <34
Total Xylenes Detected PAHs (µg/kg) ^F	3,130,000	204,000,000	4,100 ^E	280,000 .	42,000	129	82	<100	NA	31.7	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	<34	< 34	<34	<34 534
Acenaphthene	900,000	60,000,000	38.000	-		<60	111	<76.7	NA	<1.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<7.0	<6.2	<6.0	<5.6 <6.7
Acenaphthylene	18,000	360,000	700	_		<84.3	<81.1	<10.8	NA	<5.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<9.8	<8,7	<8.5	<7.8 <9.4
Anthracene	5,000,000	300,000,000	3,000,000	-		122	<12.3	119	NA	97	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4.7	<4.2	<4.1	<3.8 <4.8
Benzo(a)anthracene	88	3,900	17,000		-	327 ^A	1470 ^	313 ^	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<6.1	<5.4	<5.3	5.1 <5.8
Benzo(a)pyrene	8.8	390	48,000	-		290 ^	1660 ⁸	486 ^B	NA	<73	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3.4	<3.0	<3.0	<2.7 <3.3
Benzo(b)fluoranthene	88	3,900	360,000	-		506 ^	1790 ^	530 ^	NA	<1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3.1	7.1	<2.7	4.8 5.2 6.8 11.2
Benzo(ghi)perylene	1,800 880	39,000	6,800,000		-	252	9510 ^	341	NA NA	<2.9	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<5.9 <4.3	<5.3 <3.8	<5.1 <3.7	6.8 11.2 <3.4 <4.1
Benzo(k)fluoranlhene Chrysene	8,800	39,000 390,000	870,000 37.000	-		227 236	7090 A 1430	212 290	NA NA	<2.2 <0.73	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3.4	<3.0	<3.0	7.0 6.0
Dibenzo(a,h,)anthracene	8.8	390	38,000	_		432 ^B	1330 ^B	99 A	NA	<1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4.0	<3.6	<3.5	<3.2 <3.8
Fluroanthene	600,000	40.000.000	500,000	-	-	2150	6220	954	NA	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3.9	<3.4	<3.3	10.9 7.3
Fluorene	600,000	40,000,000	100,000	-		<25.5	5090	53.2	NA	<91	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4.9	<4.4	<4.2	<3.9 <4.7
Indeno(1,2,3-cd)pyrene	88	3,900	680,000	-		255 ^	1000 ^	302 ^	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3.3	· <2.9	<2.8	5.4 5.6
1-Methylnaphthalene	1,100,000	70,000,000	23,000	-		<44.7	2780	80.3	NA	31	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5.6	<4.9	<4.8	<4.4 <5.3
2-Methylnaphthalene	600,000	40,000,000	20,000			<52.4	160	<66.9	NA	56	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<6.1	<5.4	<5.3 <5.9	<4.9 <5.8 <5.4 <6.6
Naphthalene	20,000	110,000 390,000	400 1,800	68,000		41.9 648	213	63	NA NA	49	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<6.8 <6.1	<6.1 <5.4	<5.9	<5.4 <6.6 12.4 <5.8
Phenanthrene Pyrene	500,000	30,000,000	8,700,000			820	4620 ^C 5910	594 1160	NA	300 430	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4.2	<3.7	<3.6	5.1 <4.0
		23/000/000	-,, 00,000							-100												·•••														
votes:	• • • • • • • • • • • • • • • • • • • •	•						•														· · · ·		I				ł								
1 Standards are for 1,2,4- and 1,		e combined.				Di	RO = Diesel Ran	ge Organics																												
³ Standards are for Total PCBs.							RO = Gasoline F																													
A Parameter exceeds NR 720 G			icl.					rganic Compound																												
⁸ Parameter exceeds NR 720 G								datile Organic Co																												
 ^c Parameter exceeds NR 720 G ^D Parameter exceeds NR 746 Ta 								ar Aromatic Hydr	ocarbons																											
 Parameter exceeds NR 746 Ta Parameter exceeds Soll Screet 						PC	us = PolyChlori	inated Biphenyls																												
E Generic RCL is established un																																				
^F Generic RCLs provided InSoil (. WDNR RR-5 199	97																																
- No Generic RCL established.																																				
Generic RCLs not included in Wit	isconsin Administrativ	e Code or Guidance	are calculated from	the US EPA Soil	I Screening Lev	/el Web Page ar	nd the																													
default values contained inDef																																				
	-			-			• ·																													

~

TABLE 2 GROUNDWATER FIELD DATA PROPOSED PHARMACY FORMER WISCONSIN AUTOMATED MACHINERY OSHKOSH, WISCONSIN

.

Date	Well I.D.	Ground Surface Elevation (Feet)	TPVC Elevation (Feet)	Screen Intervai (Feet below grade)	Screen Interval Elevation (Feet)	Depth to Water below TPVC (Feet)	Groundwater Elevation (Feet)	Temp (C)	pH (Units)	Conductivity (umhos/cm)	Color	Odor
07/26/07						7.23	746.02					
08/09/07						7.40	745.85		-	_	_	-
08/27/07	PH-SB-1W	750.81	753.25	5 - 15'	745.81 - 735.81	6.30	746.95					
12/17/07						7.11	746.14		_	_	-	-
06/10/08						6.22	747.03	13.6	6.53	880		-
07/26/07						5.59	746,36		0.00		None	Slight
08/09/07		1				5.74	746.21		1	-	-	
08/27/07	PH-SB-5	749.62	751.95	10 - 15'	739.62 - 734.62	5.12	746.83		-	-	-	
12/17/07						5.91	746.04		-	-	-	
06/10/08						4.91	747.04	12.9	-	-		
07/26/07						7.44	746.10	12.9	6.81	1084	Grey	Slight
08/09/07						7.62	745.92			-	-	
08/27/07	PH-SB-6	751.16	753.54	5 - 15'	746.16 - 736.16	7.06	745.92		-	-		
12/17/07						7.74	745.80			-		
06/10/08						6.74	745.80			-		
07/26/07						7.17	746.80	13.9	6.65	3220	Grey	None
08/09/07						7.34		-		-		
08/27/07	PH-SB-7	750.68	753.32	10 - 15'	740.68 - 735.68	6.81	745.98			-		
12/17/07					140.00 - 700.00	7.49	746.51					
06/10/08						6.50	745.83		- 1	-		
07/26/07							746.82	13.9	6.87	1431	Grey	Slight
08/09/07					*	6.63	746.04	-		-		
08/27/07	PI-SB-1	750.12	752.67	5 - 14.5'	745.12 - 735.63	6.75	745.92			-		
12/17/07			102.07	0-14.0	140.12 - 130.03	5.09	747.58			-		-
06/10/08						5.97	746.70			-		
07/26/07		<u> </u>				5.16	747.51	12.6	5.66	1074	Grey	Slight
08/09/07						6.01	746.19		-	-		Oigin
08/27/07	PI-SB-3	750.13	750.00			6.11	746.09			_		
12/17/07		100.13	752.20	5 - 15'	745.13 - 735.13	5.10	747.10			_		-
06/10/08						5.94	746.26					
00/10/08		L				4.91	747.29	11.9	5.61	1151	Brown/grey	Slight

Notes:

-- = Not Sampled

TABLE 3 GROUNDWATER ANALYTICAL RESULTS MARION/PEARL REDEVELOPMENT AREA - PARCEL H OSHKOSH, WISCONSIN STS PROJECT NO.: 200701841

ł					
Stan	dards	UP-SB-6	JG-SB-2	JG-SB-3	WP-H-SB-4
ES	PAL	6/17/2002	8/28/2002	8/28/2002	8/13/07
	<u> </u>				
10	1.0	3.4	2.26	2.79	NA
2000		0.144	82	82	NA
5.0		<0.2			NA
100	10				NA
15	<u>1.5</u>	<1.0	1.03	<1.0	NA
1000	<u>200</u>	<0.3	<0.3	0.306	NA
		- - -			
0.2 40	<u>0.02</u> <u>8.0</u>	<0.017 <0.1	<0.017 0.66	<u>0.056</u> <0.109	<0.020 <0.110
	Stan ES 10 2000 5.0 100 15 1000 0.2	10 1.0 2000 400 5.0 0.5 100 10 15 1.5 1000 200 0.2 0.02	Standards UP-SB-6 6/17/2002 10 1.0 400 3.4 0.144 2000 400 400 0.144 5.0 0.5 0.5 <0.2	Standards UP-SB-6 JG-SB-2 ES PAL 6/17/2002 8/28/2002 10 1.0 3.4 2.26 2000 400 0.144 82 5.0 0.5 <0.2	Standards UP-SB-6 JG-SB-2 JG-SB-3 ES PAL $6/17/2002$ $8/28/2002$ $8/28/2002$ 10 1.0 3.4 2.26 2.79 2000 400 0.144 82 82 5.0 0.5 <0.2 <0.2 <0.2 100 10 <0.0016 1.6 1.6 15 1.5 <1.0 1.03 <1.0 1000 200 <0.3 <0.3 <0.3 0.2 0.02 <0.017 <0.017 0.056

Notes:

VOCs = Volatile Organic Compounds

¹ Standards are for 1,2,4- and 1,3,5-Trimethylbenzene combined.

² Standards are for Total Xylenes (-m, -p and -o).

Bold value = NR 140 Enforcement Standard Exceedance

<u>Underline value</u> = NR 140 WAC Preventive Action Limit Exceedance

-- No NR 140 ES or PAL established.

NA = Not analyzed

ND = Not detected

TABLE 3 GROUNDWATER ANALYTICAL RESULTS MARION/PEARL REDEVELOPMENT AREA - PARCEL H OSHKOSH, WISCONSIN STS PROJECT NO.: 200701841

	NR	140					
	Stand	dards	ZE-SB-1W	ZE-S		MW-1	MW-H4
Parameters	ES	PAL	5/9/2002	5/9/2002	5/9/02 (Dup)	5/14/2002	8/27/2002
Metals (μg/L)		4.0					
Arsenic	10 2000	<u>1.0</u>	<u>9.6</u> 0.17	<1.3 0.139	<1.3	NA NA	<u>2.26</u>
Barium Cadmium	2000 5.0	<u>400</u> 0.5	0.17 <0.2	0.139 <0.2	0.14 <0.2	NA	82 <0.2
Chromium	100	<u>0.5</u> 10	<0.0016	<0.0016	<0.0016	NA	1.6
Lead	15	1.5	<u>3.37</u>	1.39	1.89	<0.66	1.03
Selenium	50	10	<3.0	<3.0	<3.0	NA	<3.0
Silver	50	10	< 0.003	< 0.003	< 0.003	NA	<3.0
Mercury	2.0	0.2	<0.2	<0.2	<0.2	NA	<0.07
VOCs (µg/L)				0.400	0.544		
Benzene	5.0	<u>0.5</u>	<0.31	0.499	<u>0.514</u>	<0.43	<0.08
Bromobenzene Bromodichloromethane	0.6	0.06	<0.41 <0.83	<0.41 <0.83	<0.41 <0.83	<0.42 <0.55	<0.23 <0.06
sec-Butylbenzene		<u>0.00</u>	<0.33	<0.33		<0.55 NA	<0.0
tert-Butylbenzene			<0.31	<0.31	<0.31	<0.42	<0.08
n-Butylbenzene	-		<0.36	<0.36	<0.36	<0.46	<0.11
Carbon tetrachloride	5.0	<u>0.5</u>	<0.59	<0.59	<0.59	<0.56	<0.2
Chloroform	6.0	<u>0.6</u>	<0.27	<0.27	<0.27	<0.56	<0.1
Chlorobenzene	100	<u>20</u>	<0.31	<0.31	<0.31	<0.43	<0.05
Chloroethane	400	<u>80</u>	<0.44	<0.44	<0.44	<0.69	<0.6
Chloromethane	3.0	<u>0.3</u>	<0.29	<0.29	<0.29	<0.69	<0.4
2-Chiorotoluene			<0.3	<0.3	<0.3	<0.38	<0.16
4-Chlorotoluene			<0.3	<0.3	1	< 0.32	<0.32
1,2-Dibromo-3-chloropropane	0.2	0.02	NA	NA	NA NA	<0.17	<0.09
1,2-Dibromoethane Dibromomethane	0.05	0.005	NA NA	NA NA	NA NA	<0.48 NA	<0.19 <0.06
1,3-Dichlorobenzene	1250	125	<0.29	<0.29	<0.29	INA <0.26	<0.06 <0.1
1,4-Dichlorobenzene	75	15	<0.3	<0.23		<0.26	<0.1
1,2-Dichloroethane	5.0	0.5	<0.17	<0.17		<0.54	NA
1,2-Dichlorobenzene	600	60	<0.51	<0.51		<0.31	<0.11
1,1-Dichloroethene	7.0	0.7	<0.39	<0.39	<0.39	<0.57	<0.15
cis-1,2-Dichloroethene	70	7.0	<0.23	1.41	1.38	<0.53	<0.11
Dichlorodifluoromethane	1000	<u>200</u>	<0.46	<0.46		<0.68	<0.22
trans-1,2-Dichloroethene	100	<u>20</u>	<0.39	<0.39		<0.59	<0.11
1,2-Dichloropropane	5.0	<u>0.5</u>	<0.25	<0.25		<0.54	<0.09
1,1-Dichloroethane	850	<u>85</u>	<0.36	<0.36		NA	<0.15
1,3-Dichloropropane			<0.67	<0.67		NA	NA
2,2-Dichloropropane Diisopropyl ether			<1.5 NA	<1.5 NA		<0.19 <0.51	<1.5
Ethylbenzene	700	140	<0.5	<0.5		<0.51	<0.06 <0.08
Hexachlorobutadiene			<1.0	<1.0		<0.45	<0.08
Isopropylbenzene			<0.31	<0.31	<0.31	<0.46	<0.07
p-Isopropyltoluene	-		<0.32	<0.32		<0.39	<0.12
Methylene chloride	5.0	<u>0.5</u>	<0.51	<0.51	<0.51	<0.6	<0.24
Methyl-tert-butyl-ether	60	12	2.25	<0.3	<0.3	<0.49	<0.07
Naphthalene	100	<u>10</u>	<0.8	<0.8	1	<1.4	<0.1
n-Propylbenzene			<0.3			<0.34	<0.15
1,1,2,2-Tetrachloroethane	0.2	<u>0.02</u>	<0.61	<0.61		<0.25	<0.11
Tetrachloroethene	5.0	<u>0.5</u>	NA	NA		<0.49	NA
	1000	<u>200</u>	<0.3	<0.3		<0.63	<0.08
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	70	 14	<0.33 <0.47	<0.33 <0.47		<0.65 <0.1	<0.09 <0.28
1,1,1-Trichloroethane	200	40	<0.47	<0.47		<0.1	<0.28
1,1,2-Trichloroethane	5.0	<u></u> <u>0.5</u>	<0.5	<0.42		<0.52	<0.14
Trichloroethene	5.0	0.5	<0.36			<0.73	<0.13
Total Trimethylbenzene ¹	480	96	<0.71	<0.71	<0.71	<1.14	<0.11
Vinyl chloride	0.2	0.02	<0.2	0.661	0.632	<0.12	<0.16
Total Xylenes (-m, -p ^{2, & -02)}	10,000	<u>1000</u>	<0.92	<0.92	<0.92	<1.45	<0.21
PAHs (µg/L)							
Acenaphthene	-		<0.6	<0.6			<0.053
Acenaphthylene			<0.6	<0.6			<0.16
Anthracene	3000	<u>600</u>	<0.5	<0.5			<0.024
Benzo(a)anthracene Benzo(a)pyrene	0.2	<u>0.02</u>	<0.4	<0.4 <0.017	1	<0.03 <0.022	<0.03 <0.022
Benzo(b)fluoranthene	0.2	0.02	<0.4	<0.4	1	<0.022	<0.022
Benzo(ghi)perylene			<0.5	<0.5		<0.087	<0.087
Benzo(k)fluoranthene	-		<0.0	<0.4		<0.067	<0.067
Chrysene	0.2	<u>0.02</u>	<0.5	<0.5	1	<0.022	<0.007
Dibenzo(a,h,)anthracene			<0.6		1		< 0.036
Fluroanthene	400	<u>80</u>	<0.6			<0.053	<0.053
Fluorene	400	<u>80</u>	<0.12	<0.12	<0.12	<0.025	<0.025
Indeno(1,2,3-cd)pyrene	-		<0.5	<0.5		<0.03	<0.03
1-Methylnaphthalene			<0.8	<0.8	1	<0.095	<0.095
2-Methylnaphthalene	-		<0.11	<0.11		< 0.096	<0.096
Naphthalene	40	<u>8.0</u>	<0.1	<0.1	1	< 0.067	<0.067
Phenanthrene Pyrene	250	 50	<0.08 <0.09		1		<0.036
i yiono	200	50	<0.09	<0.09	<0.09	<0.13	<0.13
Notes:	<u>ا</u>	L	L	L	L	l	

Notes: VOCs = Volatile Organic Compounds ¹ Standards are for 1,2,4- and 1,3,5-Trimethylbenzene combined. ² Standards are for Total Xylenes (-m, -p and -o). Bold value = NR 140 Enforcement Standard Exceedance <u>Underline value</u> = NR 140 WAC Preventive Action Limit Exceedance -- No NR 140 ES or PAL established. NA = Not analyzed ND = Not detected

T13090002-TABLE-3-PARCEL-H-GW.xis

1

TABLE 3 GROUNDWATER ANALYTICAL RESULTS PROPOSED PHARMACY FORMER WISCONSIN AUTOMATED MACHINERY OSHKOSH, WISCONSIN

		Standards	Well Name Sample ID	ZE-SB-1W	ZE-Ŝ	8 B-2 B-2W	WM-	SB-2 SB-2	PHSE WP-H-S	SB-1W	PHS WP-H	-SB-5	PHS WP-H			3B-7 I-SB-7	WMS WM-		PI-S WP-I-4		PI-S WP-I-			V-6 W-6
Parameters	ES	PAL	Date	5/9/2002	5/9/2002	5/9/02 (Dup)	7/4/2002	7/8/2002	8/10/07	6/10/08	8/13/07	6/10/08	8/10/07	6/10/08	8/13/07	6/10/08	7/4/2002	7/8/2002	8/10/07	6/10/08	8/13/07	6/10/08	8/13/07	6/10/08
Metals (μg/L) Arsenic Lead	10 15	<u>1.0</u> 1.5		<u>9.6</u> 3.37	<1.3 1.39	<1.3 <u>1.89</u>	<u>4.39</u> <1.00	<u>4.39</u> <1.00	<0.60 <0.30	NA	0.72 0.45	NA NA	<u>2.98</u> <0.30	<0.60 NA	<u>6.29</u> 0.38	<u>1.53</u> NA	<u>2.02</u> <1.00	<u>2.02</u> <1.00	<u>5.14</u> <0.30	<0.60 NA	<u>4.53</u> <0.30	<u>2.20</u> NA	<u>3.15</u> <0.30	<0. N
/OCs (μg/L) Benzene Bromomethane Vinyl chloride	5.0 10 0.2	0.5 <u>1.0</u> 0.02		<0.31 NA <0.2	0.499 NA 0.661	<u>0.514</u> NA 0.632	<0.31 NA <0.2	NA	<0.20 <u>2.32</u> <0.20	<0.20 <1.0 <0.20	<0.20 <1.0 <0.20	<0.20 <u>1.10</u> <0.20	<0.20 <1.0 <0.20	NA NA NA		<0.20 <u>1.64</u> <0.20	NA	<0.31 NA <0.2	<0.20 <1.0 <0.20	NA NA NA	<1.0	NA NA NA	<0.20 <1.0 <0.20	
PAHs (µg/L) Benzo(a)pyrene Benzo(b)fluoranthene	0.2 0.2	<u>0.02</u> <u>0.02</u>		<0.017 <0.4	<0.017 <0.4		<0.022 <0.036	<0.022 <0.036	<0.020 <0.020	NA NA	<0.020 <0.020	NA NA	<0.020 <0.020	NA NA	<0.020 <0.020	NA NA		0.76 <u>0.16</u>	<0.020 <0.020	NA NA	<0.020 <0.020	NA NA	<0.020 <0.020	
otes: VOCs = Volatile Organic Cor ES = NR 140 Enforcement S PAL = NR 140 Preventive Ac Bold value = NR 140 Enforc <u>Underline value</u> = NR 140 Pr No NR 140 ES or PAL est NA = Not analyzed ND = Not detected	Standard ction Limit cement Star reventive A																							

1 of 1

.

χ.

T200701841-TABLE-3-PARCEL-H-GW.XLS

-

.

TABLE 4

EVALUATION OF POTENTIAL SOIL REMEDIAL ALTERNATIVES REDEVELOPMENT PARCEL H OSHKOSH, WISCONSIN

	Feasibility Criteria	Weight	No Action	Off-Site Landfilling	On-Site Reuse with Performance Barriers and Limited Off-Site Landfilling	Ex-Situ Thermal Treatment and Stabilization
	Technical simplicity	5	3	3	3	2
Eff	ectiveness in protecting human health and the environment	6	1	3	3	2
	Affordability	6	3	1	2	1
	Implementation time frame savings	7	3	3	2	3
no	Minimizes Total Energy Use and Maximizes Use of Renewable Energy	1	3	1	2	1
Evaluation	Minimizes Air Pollutants and Greenhouse Gas Emissions	1	3	1	3	2
	Minimizes Water Use and Impacts to Water Resources	1	3	1	2	1
Cleanup	Reduces, Reuses and Recycles Material and Waste	1	0	1	3	1
Green	Optimizes Future Land Use and Enhances Ecosystems	1	0	0	2	1
Ľ	Optimizes Sustainable Management Practices During Stewardship	1	0	1	2	1
L	TOTAL UNWEIGHTED SCORE		19	15	24	15
	TOTAL WEIGHTED SCORE		69	65	73	56

Scoring 1 = Low2 = Medium 3 = High 2

TABLE 5

· · ·

OPINION OF PROBABLE COSTS OF POTENTIAL REMEDIAL ALTERNATIVES REDEVELOPMENT PARCEL H OSHKOSH, WISCONSIN

		Estima	ated Costs	
			On-Site Reuse with	Ex-Situ Thermal Treatment
			Performance Barriers and	and
	No Action	Off-Site Landfilling	Limited Off-Site Landfilling	Solidification/Stabilzation
Community Involvement	<u>\$0</u>	\$10,000	\$10,000	\$10,000
Treatability Study	\$O	\$0	\$0	\$30,000
Preparation of Work Plan	\$0	\$10,000	\$10,000	\$20,000
Site Remedial Activities	\$O	\$2,780,000	\$330,000	\$38,200,000
Alternative (Deep) Foundation	\$0	\$0	\$450,000	\$0
Confirmatory Sampling	\$0	\$25,000	\$15,000	\$35,000
Preparation of Corrective			\$10,000	\$33,000
Action Completion Report	\$0	\$20,000	\$20,000	000 003
Contigency (5%)	\$0	\$142,250	\$41.750	\$20,000
Total Estimated Cost	\$0	\$2,987,250	\$876,750	\$1,915,750 \$40,230,750

, .

Table 6

Environmental Benefits of Green Remediation Best Management Practices

	Applicability		ability 	Green Remediation Core Element				Impact on other feasibility criteria					
Best Management Practice	Landiil	Pettormance Barriers	Soil Treatment	Minimize total energy use	Minimize air pollutants and greenhouse gas emissions	Minimize water use and impact to water resources	Optimize future land use and enhance ecosystems	Reduce, reuse, recylce waste material	Optimize sustainable management practices during stewardship	Technical practicability	Effectiveness in protecting human health and environment	Cost of Implementation	Implementation schedule
Impose idle restrictions on construction equipment	Û	Û	Û	÷	+	0	0	o	+	o	+	0	-
Impose restrictions to minimize noise disturbance	Û	Û	Û	0	+	o	o	o	+	0	+	ο	-
Use low-sulfur diesel fuel	⇔	K,		-	+	0	o	o	o	o	+	-	0
Use alternative fuels, E85, Biodiesel	₿	K,	₽	-	+	0	ο	+	+	o	o	-	0
Use enhanced emissions controls on construction equipment	Û	Û	Û		+	ο	o	ο	o	0	+	-	ο
Sequence work to minimize material handling	Û	Û	Û	+	+	ο	ο	0	+	o	o	+	-
Cover stockpiles to control dust and sediment in runoff	Û	Û	Û	o	+	+	+	o	o	0	+	ο	0
Collect rainwater for use as dust control	⇔		\Leftrightarrow	0	o	÷	o	+	ο	ο	ο	-	0
Crush existing floor slab and asphalt pavement for use as construction material	Ū	Û	Ū	-	-	o	o	+	+	ο	o	-	-
Minimize contruction dewatering	D	Û	Ŋ	÷	ο	+	+	0	ο	ο	o	+	-
Segregate wood waste from fill material, use as fuel source	IJ	Û	Ū	-	o	0	0	+	ο	o	o	-	-
Use energy efficient equipment in job trailer	Û	Û	Û	+	+	o	o	o	٥	o	o	0	0
Integrate anticipated future site use into cleanup strategy	Û	Û	Ω	+	+	0	+	o	+	0	0		÷

Easy to apply to remediation alternative

Difficult to apply to remediation alternative

.

Advances core element of green ÷ remediation

green remediation

Hedium difficulty in applying to remediation alternative

Negative impact on core element of

Little or no impact on core element 0 of green remediation

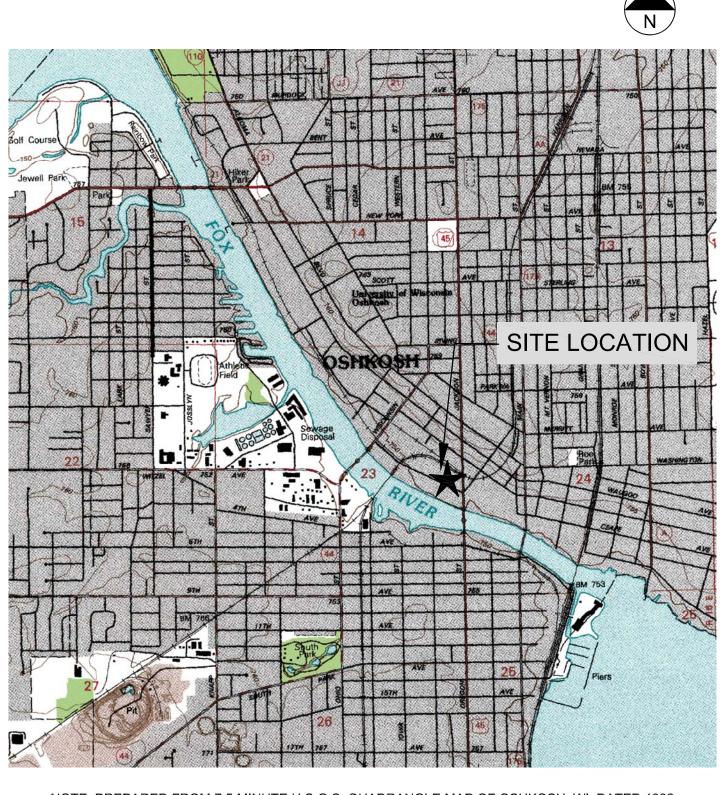
Positive impact on +

· · · ·

feasibility criterion

Positive impact on feasibility criterion

Little or no impact on 0 feasibility criterion


TABLE 7

SUMMARY OF SUSTAINABILITY METRICS REDEVELOPMENT PARCEL H OSHKOSH, WISCONSIN

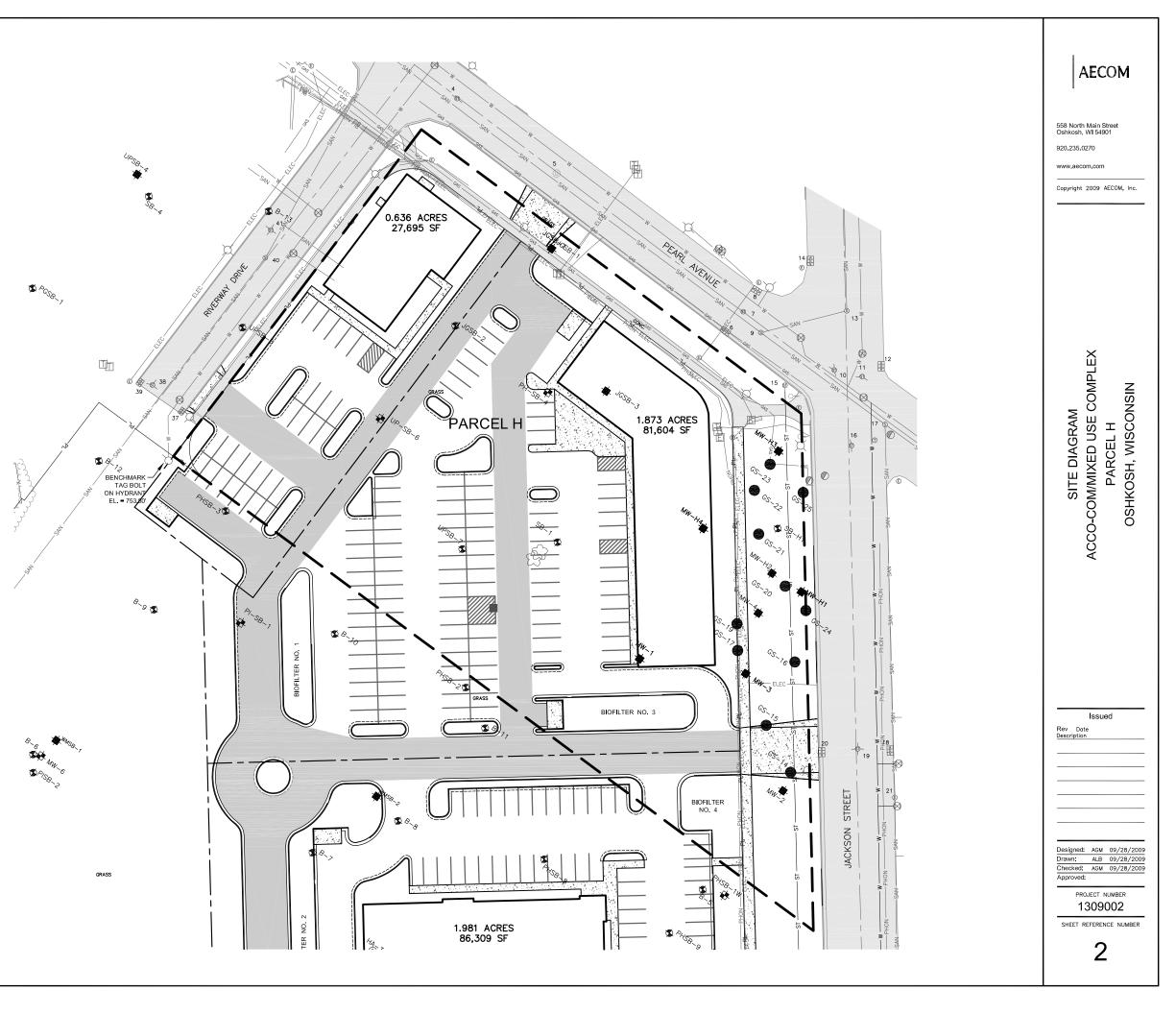
Remedial Alternative	Atmospheric Carbon Dioxide Emissions (Tons)	Total Energy Consumption (Megajoules)	
No Action	0	0	
Off-Site Landfilling	240	3,100,000	
On-Site Reuse with Performance Barriers and Limited Off-Site Landfilling	31	400,000	
Ex-Situ Thermal Treatment and Stabilization	27,070	5,430,000	

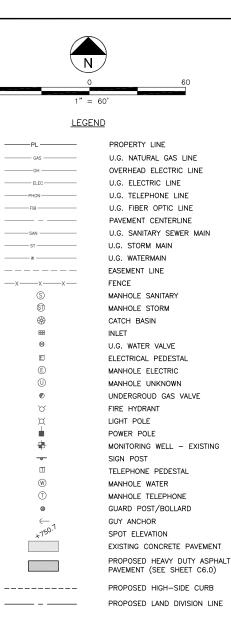
Figures

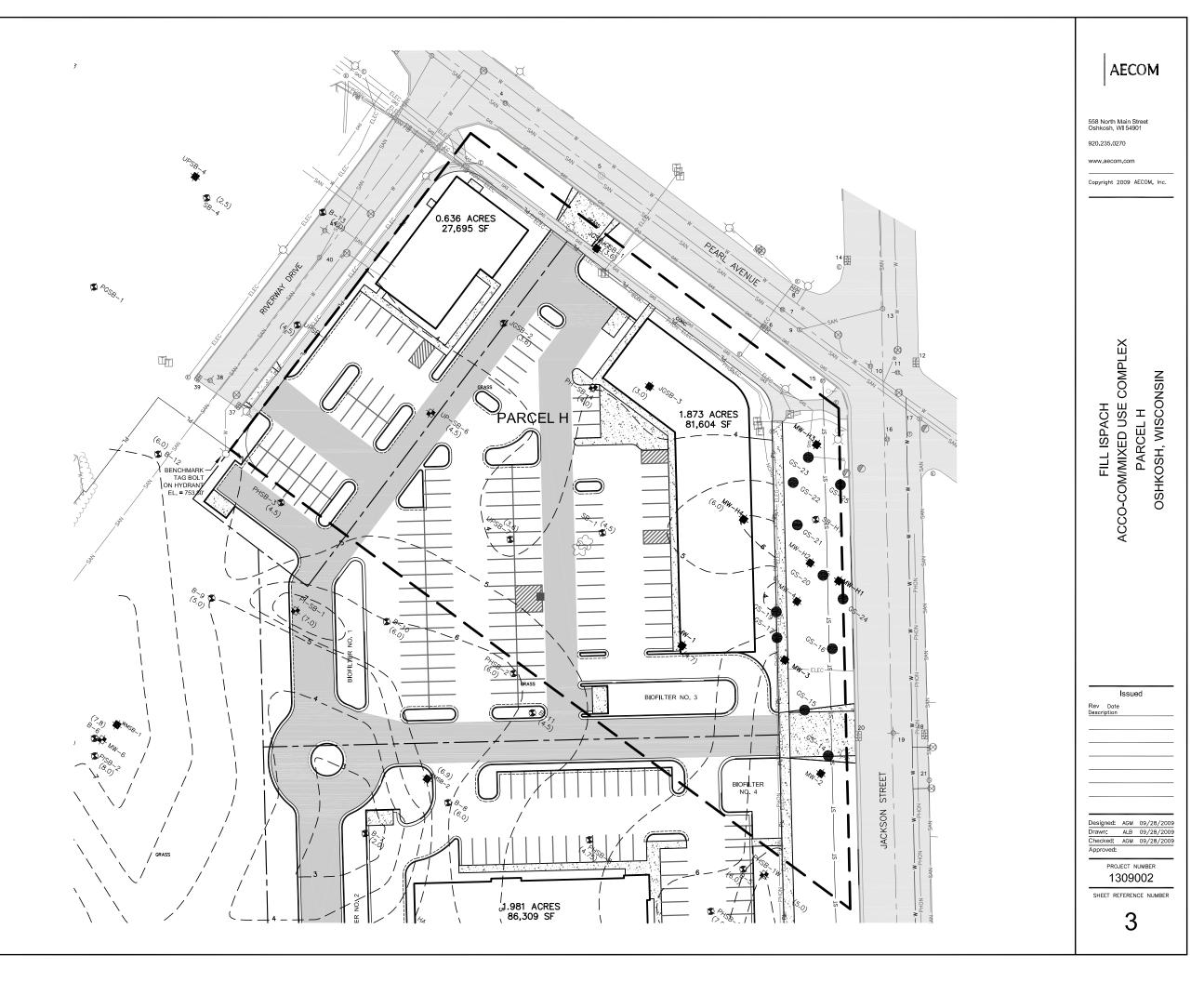
Figure 1 Site Location Map

NOTE: PREPARED FROM 7.5 MINUTE U.S.G.S. QUADRANGLE MAP OF OSHKOSH, WI. DATED 1992.

AECOM

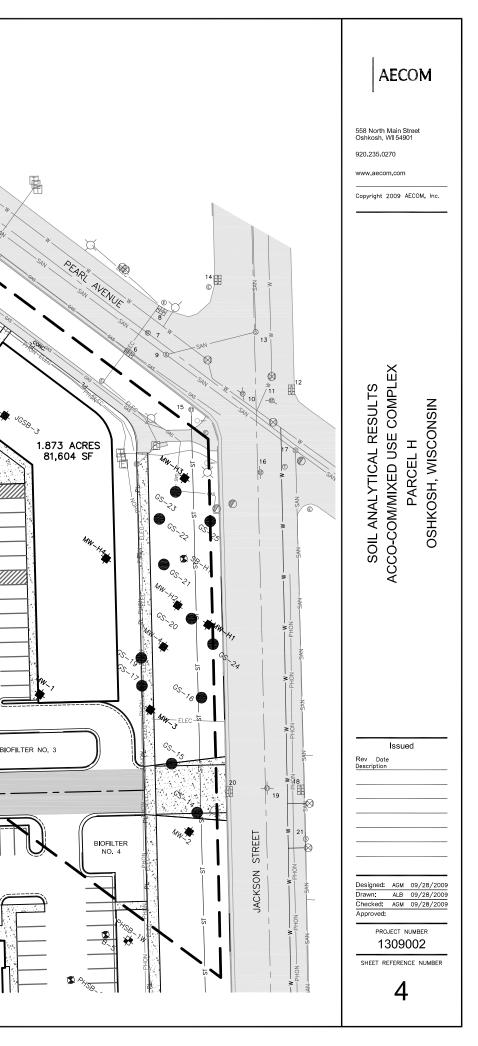

3909 Concord Avenue Weston, WI 54476 715.355.4304 www.aecom.com Copyright © 2009, By: AECOM, Inc. SITE LOCATION MAP ACCO-COM/MIXED USE COMPLEX PARCEL H OSHKOSH, WISCONSIN


Drawn :	ALB	09/28/2009
Checked:	AGM	09/28/2009
Approved:		
PROJECT NUMBER	130)90002
FIGURE NUMBER		1


Drawings

Drawing 2007-1	Monitoring Well and Soil Boring Location Diagram
Drawing 2007-2	Fill Isopach
Drawing 2007-3	Soil Analytical Results
Drawing 2007-4	Groundwater Analytical Results

	N
60	0 60
1"	= 60'
LEC	GEND
PL	PROPERTY LINE
GAS	U.G. NATURAL GAS LINE
OH	OVERHEAD ELECTRIC LINE
ELEC	U.G. ELECTRIC LINE
PHON	U.G. TELEPHONE LINE
	U.G. FIBER OPTIC LINE
	PAVEMENT CENTERLINE
SAN	U.G. SANITARY SEWER MAIN
ST	U.G. STORM MAIN
w	U.G. WATERMAIN
	EASEMENT LINE
xx	FENCE
S	MANHOLE SANITARY
SD	MANHOLE STORM
*	CATCH BASIN
EE	INLET
0	U.G. WATER VALVE
E	ELECTRICAL PEDESTAL
E	MANHOLE ELECTRIC
\bigcirc	MANHOLE UNKNOWN
Ø	UNDERGROUD GAS VALVE
Q	FIRE HYDRANT
ä	LIGHT POLE
	POWER POLE
+	MONITORING WELL - EXISTING
-	SIGN POST
Ξ	TELEPHONE PEDESTAL
W	MANHOLE WATER
T	MANHOLE TELEPHONE
0	GUARD POST/BOLLARD
←1	GUY ANCHOR
*150.7	SPOT ELEVATION
	EXISTING CONCRETE PAVEMENT
	PROPOSED HEAVY DUTY ASPHALT PAVEMENT (SEE SHEET C6.0)
	PROPOSED HIGH-SIDE CURB
	PROPOSED LAND DIVISION LINE



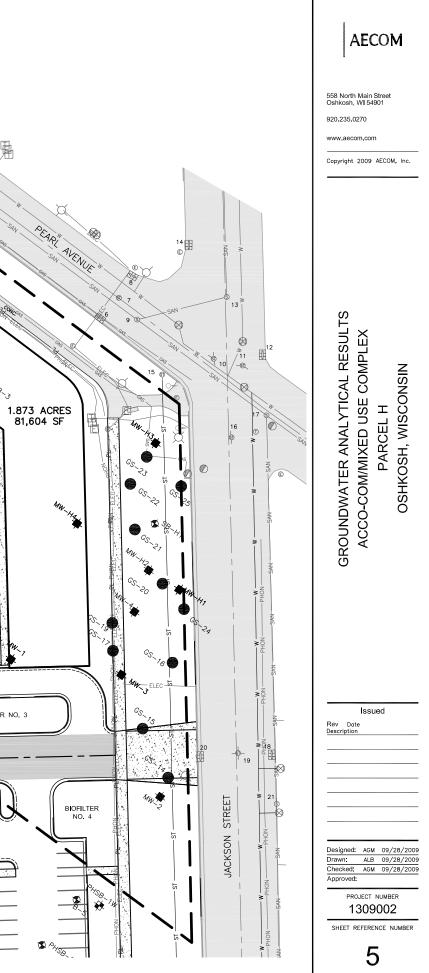
PL	0 60 1" = 60' <u>LEGEND</u> 	}		
	OVERHEAD ELECTRIC LINE U.G. ELECTRIC LINE U.G. TELEPHONE LINE U.G. FIBER OPTIC LINE PAVEMENT CENTERLINE U.G. SANITARY SEWER MAIN U.G. STORM MAIN U.G. WATERMAIN EASEMENT LINE		(PSG) * * * *	5 40 5 10 5 10 5 10 5 10 5 10 5 10 5 10
\$* Ⅲ ◎ ⊑ ⓒ ① ● ₽ ■ ₽	CATCH BASIN INLET U.G. WATER VALVE ELECTRICAL PEDESTAL MANHOLE ELECTRIC MANHOLE UNKNOWN UNDERGROUD GAS VALVE FIRE HYDRANT LIGHT POLE POWER POLE MONITORING WELL - EXISTING SIGN POST		50 - 7 5 - 6 - 38 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	State of the second sec
□ (₩) (T) (← ×15 ^{0,1}) ()	TELEPHONE PEDESTAL MANHOLE WATER MANHOLE TELEPHONE GUARD POST/BOLLARD GUY ANCHOR SPOT ELEVATION EXISTING CONCRETE PAVEMENT PROPOSED HEAVY DUTY ASPHALT PAVEMENT (SEE SHEET C6.0) PROPOSED HIGH—SIDE CURB — PROPOSED LAND DIVISION LINE	א - - 	BENCHMARK - TAG BOLT ON HYDRANT EL. = 753.00	
Paraméters No Matasi (ng) Astronov Asseric Balaum	Gatewice BCLs NR 749 Sol Screening SB-1 LP-68-8 Date Consider Personal Industrial Personal Personal 0.2 4.47 25.4.47 25. Date Consider Personal Personal Death 44/2002 44/2002 641/202 641/202 0.096 1.6.6 6.49 0.44/2002 44/2002 641/202 641/202 0.096 1.6.6 0.56 - 4.4 0.49 52.7 3.11 3.130 2.4.410 3.300 - N.4 NA NA 50 0.28	22 8/20/2002 8/20/2002 8/20/2002 8/20/2002 8/20/2002 7/17/2007 1 1 195 1.89 <1.4 <1.46 <1.57 <1.42 NA 3.44 4.15 4.13 3.34 3.19 5.22 NA	UP 586 UP 587 MN-11 HA-4A H4-4B 502 502 4-8 9.7 7-4 510402 2-136 NA NA 194-4B 112002 442002 442002 6112002 612002 6112002 6112002 612002 612002 5142 5145 NA NA NA NA 327 3.11 9 10 1.1 9 NA NA 355 9.28 NA NA NA NA NA	
p-Isopropytioluene Naphthalene Toluene 1 Totai Trimethylbenzene	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i <0.705	0.0004 0.0086 3.2 -1.2 NA NA 41.5 33.8 NA NA NA NA 23.6 20.2 NA NA NA NA 0.007 -0.75 -0.75 -0.75 -0.75 -0.75 -0.129 0.775 -0.75 NA NA NA NA 10.19 0.075 NA NA NA NA NA -0.129 0.075 NA NA NA NA NA 21.8 20.3 NA NA NA NA NA 21.8 20.3 NA NA NA NA NA 22.6 2.3 NA NA NA NA NA 23.7 NA NA NA NA NA NA 24.8 2.3 -2.5 -2.5 NA NA NA 24.7 2.3 2.5 -2.5 NA NA	
Acessphilylere Actizarere 5 Bencologianthocere 5 Bencologianthocere Bencologianthocere Bencologianthocere Bencologianthocere Darscell, horthocere Flucente Flucente Flucente Flucente Sattificatione 1 Sattificatione 1 Sattificatione 1 Sattificatione 1 Sattificatione 1 Sattificatione 1 Sattificatione 1 Sattificatione 1 Sattificatione 1	600.00 60.000.00 38.00 - 44.00 - 44.0 - 44.0 - 19.0 10.000 30.000 - 60.000 30.000 - 60.000 10.000 19.000 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>-48.07 115 220 -41 NA NA -4.653 1053 1000 -42 NA NA -70.77 2060 1000 -54 NA NA 113 2060 2060 -54 NA NA 113 2060 2060 -54 NA NA 113 2060 1000 -42 NA NA 113 2060 1000 -422 NA NA 113 1000 2000 -470 NA NA 113 1000 2000 -770 NA NA 113 1000 2000 -770 NA NA 113 1000 1000 010 NA NA 113 1000 100 100 NA NA 1130 640 1077 NA NA 1130 1030 440 -377 NA NA 120</td><td></td></td<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-48.07 115 220 -41 NA NA -4.653 1053 1000 -42 NA NA -70.77 2060 1000 -54 NA NA 113 2060 2060 -54 NA NA 113 2060 2060 -54 NA NA 113 2060 1000 -42 NA NA 113 2060 1000 -422 NA NA 113 1000 2000 -470 NA NA 113 1000 2000 -770 NA NA 113 1000 2000 -770 NA NA 113 1000 1000 010 NA NA 113 1000 100 100 NA NA 1130 640 1077 NA NA 1130 1030 440 -377 NA NA 120	
Notes: Notes: Standards are for 12.4 and 13.5-7 Standards are for Yote POBs Parameter exceeds NR 720 Genetic Parameter exceeds NR 720 Genetic Parameter exceeds NR 725 Genetic Parameter exceeds NR 745 Table + Colorent CILs provided in Sol Class NO Genetic RCLs sptialished.	Innehyberaane combined. Rich terkon-bashiel Direct Contect. Rich terkon-bashiel Direct Contect. Rich terkon-bashiel Pathway. Seld Streaming Lewis			N 22 1.981 ACRES 86,309 SF

the Code or Guidance are calculated from the US EPA Soil Screening Level Veb Page and the /****tawsivar/ / evels using the EPA Soil Screening Level Web Sile WDNR PUB-RR-682 on Way 12, 2006

50 	0 60	
	= 60' <u>END</u>	
PL	PROPERTY LINE	
GAS	U.G. NATURAL GAS LINE	
он	OVERHEAD ELECTRIC LINE	(pp.
ELEC	U.G. ELECTRIC LINE	-~S8
	U.G. TELEPHONE LINE	₩^
	U.G. FIBER OPTIC LINE	a x
	PAVEMENT CENTERLINE	
SAN	U.G. SANITARY SEWER MAIN	*
ST	U.G. STORM MAIN	
w	U.G. WATERMAIN	
	EASEMENT LINE	, and the second se
xx	FENCE	
S	MANHOLE SANITARY	CSOL, CSOL,
SD	MANHOLE STORM	CSB- T ESB- T
\$	CATCH BASIN	
#	INLET	
0	U.G. WATER VALVE	
E	ELECTRICAL PEDESTAL	
E	MANHOLE ELECTRIC	
0	MANHOLE UNKNOWN	
Ø	UNDERGROUD GAS VALVE	
Q	FIRE HYDRANT	
¤ _	LIGHT POLE	
	POWER POLE	
+	MONITORING WELL - EXISTING	
	SIGN POST	
E (W)		rö sä kill
w T	MANHOLE WATER	
•		
© 	GUARD POST/BOLLARD	
*15 ^{0.1}	GUY ANCHOR SPOT ELEVATION	EL = 753.00 PHSB-33
* 1*	EXISTING CONCRETE PAVEMENT	
	PROPOSED HEAVY DUTY ASPHALT PAVEMENT (SEE SHEET C6.0)	5 55
	PROPOSED HIGH-SIDE CURB	
	PROPOSED LAND DIVISION LINE	je standard standar
	THE SEE BIND DIVISION LINE	

	NR	140				
	Stan	dards	UP-SB-6	JG-SB-2	JG-SB-3	WP-H-SB-4
Parameters	ES	PAL	6/17/2002	8/28/2002	8/28/2002	8/13/07
Metals (µg/L)			İ			
Arsenic	10	<u>1.0</u>	3.4	2.26	2.79	NA
Barium	2000	400	0.144	82	82	NA
Cadmium	5.0	0.5	<0.2	<0.2	<0.2	NA
Chromium	100	10	< 0.0016	1.6	1.6	NA
Lead	15	<u>1.5</u>	<1.0	1.03	<1.0	NA
VOCs (µg/L)						
Toluene	1000	<u>200</u>	<0.3	<0.3	0.306	NA
PAHs (µg/L)						
Benzo(a)pyrene	0.2	0.02	<0.017	<0.017	0.056	<0.020
Naphthalene	40	<u>8.0</u>	<0.1	0.66	<0.109	<0.110
Notes:						
VOCs = Volatile Organic (Compounds					
¹ Standards are for 1,2,4-	and 1,3,5-Tri	methylbe	nzene combin	ed.		
² Standards are for Total 2						
Bold value = NR 140 Enf	orcement Sta	andard Ex	ceedance			
Underline value = NR 140	WAC Prevent	tive Actio	n Limit Excee	dance		
No NR 140 ES or PAL	established.					
NA = Not analyzed						
ND = Not detected						

ADAM:


BREUNIG.

9:43:26 AM;

围 0.636 ACRES 27,695 SF ₩ ./_{CSB-3} AN SO DE PARCEL H C, ľ *, } NSQ. 100 К¥. BIOFILTER NO. 1 `?**%** BIOFILTER NO. 3 ۲ NO. 2 1.981 ACRES 86,309 SF Ш

Appendix A

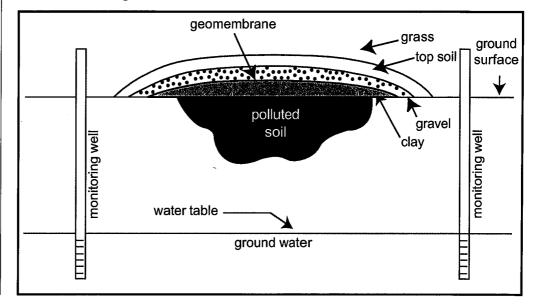
EPA Citizen's Guides

United States Environmental Protection Agency Office of Solid Waste and Emergency Response (5102G) EPA 542-F-01-022 December 2001 www.epa.gov/superfund/sites www.cluin.org

EPA A Citizen's Guide to Capping

The Citizen's Guide Series

EPA uses many methods to clean up pollution at Superfund and other sites. If you live, work, or go to school near a Superfund site, you may want to learn more about these methods. Perhaps they are being used or are proposed for use at your site. How do they work? Are they safe? This Citizen's Guide is one in a series to help answer your questions.


What is capping?

Capping involves placing a cover over contaminated material such as the waste buried at a landfill. Such covers are called "caps." Caps do not clean up the contaminated material. They just keep it in place so it will not come into contact with people or the environment.

How does it work?

Sometimes digging up and removing contaminated material can be difficult or expensive. Instead, a cap will be placed over it to keep it in place. A cap works in three main ways:

- 1) It stops rainwater from seeping through the hazardous material and carrying the pollution into the groundwater, lakes or rivers.
- 2) It stops wind from blowing away the hazardous material.
- 3) It keeps people and animals from coming into contact with the contaminated material and tracking it off the site.

United States Environmental Protection Agency Office of Solid Waste and Emergency Response (5102G) EPA 542-F-01-023 December 2001 www.epa.gov/superfund/sites www.cluin.org

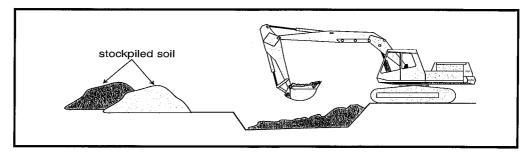
EPA A Citizen's Guide to Soil Excavation

The Citizen's Guide Series

EPA uses many methods to clean up pollution at Superfund and other sites. If you live, work, or go to school near a Superfund site, you may want to learn more about cleanup methods. Perhaps they are being used or are proposed for use at your site. How do they work? Are they safe? This Citizen's Guide is one in a series to help answer your questions.

What is excavation?

Excavation is digging up polluted soil so it can be cleaned or disposed of properly in a landfill. The soil is excavated using construction equipment, like backhoes or bulldozers.


How does it work?

Before soil can be excavated, EPA must figure out how much of it there is. EPA also determines the types of harmful chemicals in the soil. This requires research on past activities at the site as well as testing of the soil.

Once the polluted areas are found, digging can begin. Backhoes, bulldozers and front-end loaders remove the soil and put it on tarps or in containers. The soil is covered to prevent wind and rain from blowing or washing it away. The covers also keep workers and other people near the site from coming into contact with polluted soil. The digging is complete when test results show that the remaining soil does not pose a risk to people or the environment.

The polluted soil may be cleaned up onsite or taken elsewhere for this purpose (See *A Citizen's Guide to Thermal Desorption* [EPA 542-F-01-003], and *A Citizen's Guide to Soil Washing* [EPA 542-F-01-008]). The soil may also may be disposed of in a regulated landfill. If the soil is cleaned, it may be returned to the holes it came from. This is called *backfilling*. The area may also be backfilled with clean soil from another location.

After an excavation is backfilled, it may be landscaped to prevent erosion or it may be paved or prepared for some other use.

is excavation safe?

Excavation can safely remove most types of polluted soil from a site. However, certain types of harmful chemicals require special safety precautions. For example, some chemicals may *evaporate*, or change into gases. To prevent the release of gases to the air, site workers may coat the ground with foam or draw the vapor into gas wells. Other chemicals, like acids and explosives, also require special handling and protective clothing to reduce the danger to site workers.

How long will it take?

Excavating polluted soil may take as little as one day or as long as several months. Cleaning the soil may take much longer. The total time it takes to excavate and clean up soil depends on several factors:

- types and amounts of harmful chemicals present
- size and depth of the polluted area
- type of soil
- amount of moisture in the polluted soil (wet soil slows the process)

Why use excavation?

EPA has had lots of experience using excavation to clean up sites. Excavation is used most often where other underground cleanup technologies will not work or will be too expensive. Excavation of soil for disposal or treatment above ground is often the fastest way to deal with chemicals that pose an immediate risk. Polluted soils deeper than 10 feet generally cannot be excavated. This method is most cost-effective for small amounts of soil.

For more information

write the Technology Innovation Office at:

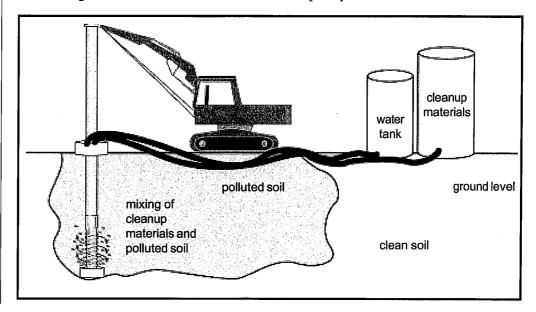
U.S. EPA (5102G) 1200 Pennsylvania Ave., NW Washington, DC 20460

or call them at (703) 603-9910.

Further information also can be obtained at www.cluin.org or www.epa.gov/ superfund/sites. United States Environmental Protection Agency Office of Solid Waste and Emergency Response (5102G) EPA 542-F-01-024 December 2001 www.epa.gov/superfund/sites www.cluin.org

EPA A Citizen's Guide to Solidification/Stabilization

The Citizen's Guide Series


EPA uses many methods to clean up pollution at Superfund sites. If you live, work, or go to school near a Superfund site, you may want to learn more about these methods. Perhaps they are being used or are proposed for use at your site. How do they work? Are they safe? This Citizen's Guide is one in a series to help answer your questions.

What is solidification/stabilization?

Solidification/stabilization refers to a group of cleanup methods that prevent or slow the release of harmful chemicals from polluted soil or sludge. These methods usually do not destroy the chemicals—they just keep them from moving into the surrounding environment. Solidification refers to a process that binds the polluted soil or sludge and cements it into a solid block. Stabilization refers to changing the chemicals so they become less harmful or less mobile. These two methods are often used together to prevent exposure to harmful chemicals.

How do they work?

Solidification involves mixing polluted soil with a substance, like cement, that causes the soil to harden. The mixture dries to form a solid block that can be left in place or removed to another location. The solidification process prevents chemicals from spreading into the surrounding environment. Rain or other water cannot pickup or dissolve the chemicals as it

moves through the ground. Solidification does not get rid of the harmful chemicals, it simply traps them in place.

Stabilization changes harmful chemicals into substances that are less harmful or less mobile. For example, soil polluted with metals can be mixed with lime. The lime reacts with metals to form metal hydroxides. The metal hydroxides do not move through and out of the soil as easily.

Solidification/stabilization methods may or may not require the soil to be removed. Sometimes it is better to dig up the soil and place it in large mixers above ground to be sure that all of the polluted soil mixes with the cleanup materials, such as cement and lime. The mixture may then be returned to the ground at the site or placed in a landfill. At other sites, instead of digging up the soil, it is mixed in place with the cleanup materials. Then it is covered with clean soil or pavement. After solidification/stabilization is completed, EPA tests the surrounding soil to make sure no pollution was missed.

Is solidification/stabilization safe?

In order to make sure of the safety of the remedy, EPA tests the final mixture to confirm proper sealing of the harmful chemicals and for strength and durability of the solidified or stabilized materials. Sometimes EPA will place use restrictions on areas that have received solidification or stabilization. These land use restrictions can prevent future damage to the treated area.

How long will it take?

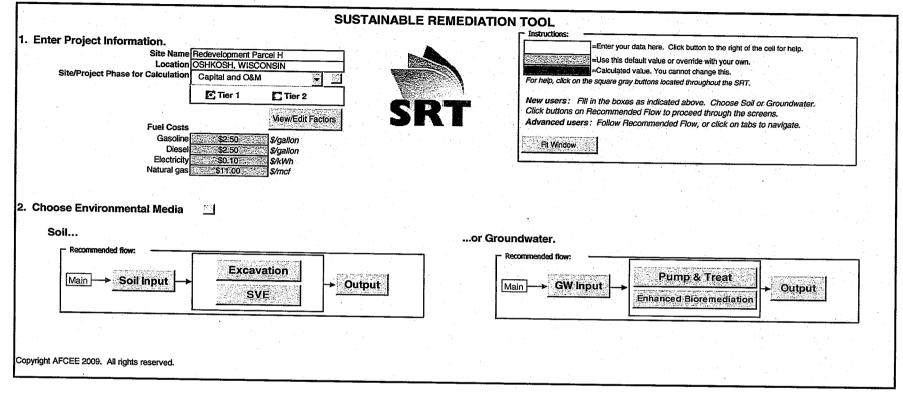
Solidification/stabilization may take weeks or months to complete, depending on several factors that vary from site to site:

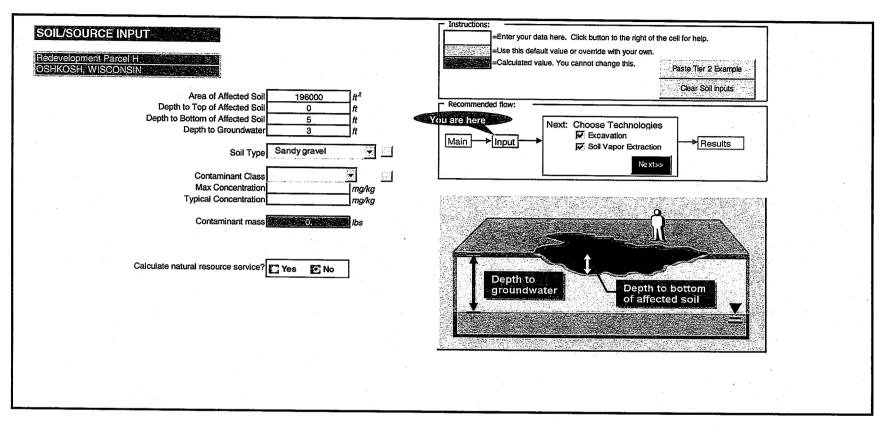
- types and amounts of chemicals present
- size and depth of the polluted area
- types of soil and geologic conditions
- · whether the mixing occurs in place or in mixing tanks

Why use solidification/stabilization?

Solidification/stabilization provides a relatively quick and low cost way to protect from the threat posed by harmful chemicals, especially metals. Solidification/stabilization has been chosen as part of the remedy at 183 Superfund sites across the country.

For more information

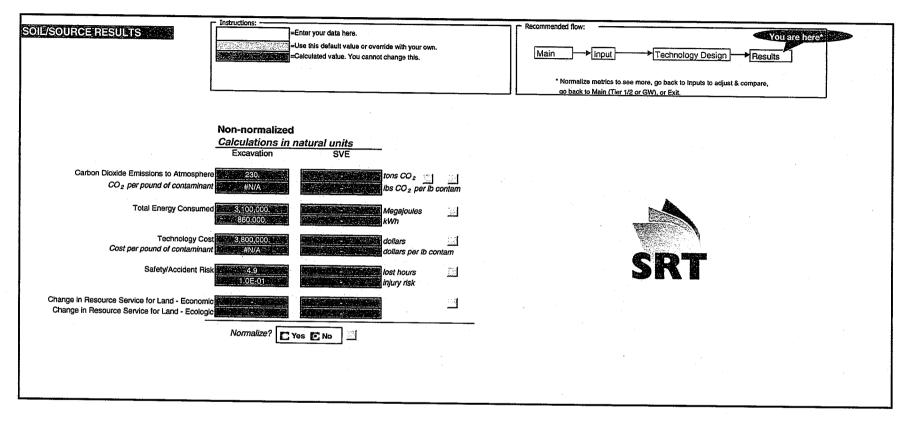

write the Technology Innovation Office at:

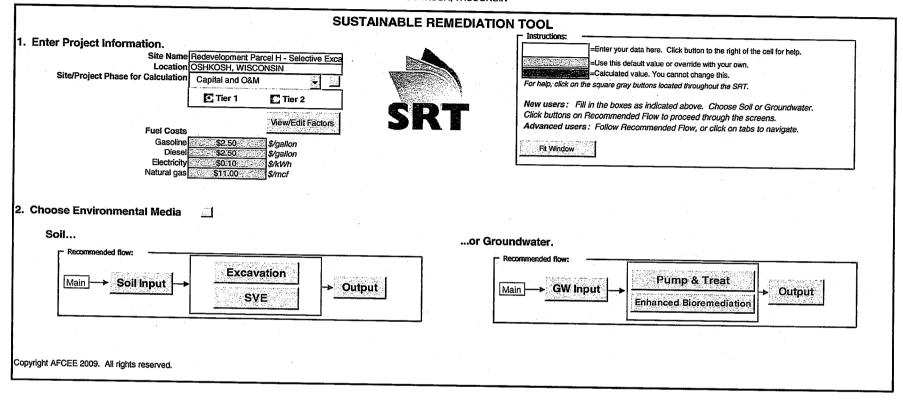

U.S. EPA (5102G) 1200 Pennsylvania Ave., NW Washington, DC 20460

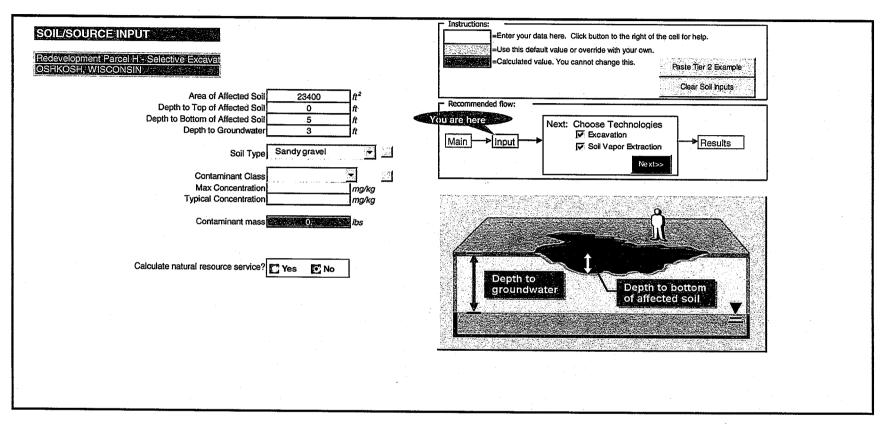
or call them at (703) 603-9910.

Further information also can be obtained at www.cluin.org or www.epa.gov/ superfund/sites. Appendix B

Sustainability Evaluations Calculations

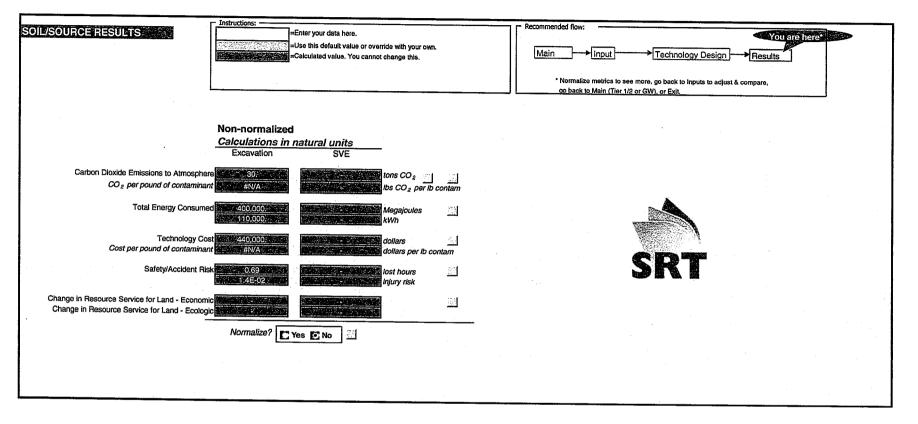





.

•

EXCAVATION - TIER 1	=Enter your data here. Click button to the right of the cell for heip.
Redevelopment Parcel H	=Use this default value or override with your own. Restore Defaults
OSHKOSH, WISCONSIN	Calculated value. You cannot change this.
CAPITAL and O&M	
Design for Managing Soil	Recommended flow:
Airline miles flown by project team (total miles for all travelers) 0 miles over proj lifetime	You are here
Average Distance Traveled by Site Workers per one-way trip 10 miles one-way	Technology Design
Trips by Site Workers during construction 100 # over project lifetime	Main hput Results
Trips by Site Workers after construction 10 # over project lifetime	
Distance to Disposal (one-way) 5 miles	Next>>
Distance to Disposal (one-way) 5 miles Type of Disposal Non-hazardous	
Volume of affected soil 980;000	Materials and Consumable Amounts used for Metrics
Volume of affected soil	The transmission of the tr
	Gasolina
Total hours to excavate 946	gal
Number of loads for disposal 3;500. #	Technology Cost
Total miles driven for disposal 35,000 miles	Capital 3760,000 \$
Total hours for fill dirt placement	O&M
Number of loads of fill dirt 4,000, #	
Total miles driven for fill 76,000 miles	Project-specific Metrics (Add & Subtract/Offsets)
	Additional Technology Cost \$
	Total Energy Consumed Megajoules
	CO2 Emissions to Atmosphere tons CO2
	Safety / Accident Risk lost hours


.

ON-SITE REUSE WITH PERFORMANCE BARRIERS AND LIMITED OFF-SITE LANDFILLING REMEDIAL OPTION FORMER WISCONSIN AUTOMATED MACHINERY OSHKOSH, WISCONSIN

•	
EXCAVATION - TIER 1	=Enter your data here. Click button to the right of the cell for help.
Redevelopment Parcel H - Selective Excavation	=Use this default value or override with your own. Restore Defaults
OSHKOSH, WISCONSIN	=Calculated value. You cannot change this.
CAPITAL and O&M	
Design for Managing Soil	Recommended flow:
Airline miles flown by project team (total miles for all travelers) 0 miles over proj lifetime	You are here
Average Distance Traveled by Site Workers per one-way trip 10 miles one-way	Technology Design
Trips by Site Workers during construction 100 # over project lifetime	Main Input Results
Trips by Site Workers after construction 10 # over project lifetime	Soli Vapor Extraction
	Next>>
Distance to Disposal (one-way) 5 miles	
Type of Disposal Non-hazardous	
Volume of affected soil 117,000	Materials and Consumable Amounts used for Metrics
Volume of affected soil	Diesel 2:200
	Gasoline 150 gal
Total hours to excavate 110 person-hours	
Number of loads for disposal 420.	Technology Cost
Total miles driven for disposal 4;200.	Capital \$
Total hours for fill dirt placement	O&M
Number of loads of fill dirt 470.	
Total miles driven for fill 9,400 miles	Project-specific Metrics (Add & Subtract/Offsets)
	Additional Technology Cost
	Total Energy Consumed Megajoules
	CO2 Emissions to Atmosphere tons CO2
	Safety / Accident Risk lost hours

.

•

LDW SUSTAINABILITY TOOL CALCULATION

THERMAL TREATMENT REMEDIAL OPTION

OSHKOSH, WISCONSIN

1

6	THERMALTREA	THENT	
Description	Equipment	Units	Ait 1
volume	desorber	cubic yard	860,485
construction area	-	acres	4
soil density	-	pounds/cubic yard	2,601
soil temperature increase	-	°C	300
specific heat of soil	-	megajules/pund °C	0.0004
plant throughput	desorber	long tons/day	336
number of construction equipment operators	-	worker	3
OTHER CATEGORIES	-	worker	0

.

LDW SUSTAINABILITY TOOL CALCULATION

THERMAL TREATMENT REMEDIAL OPTION

OSHKOSH, WISCONSIN

8 THERMA	AL TREATMENT		Thermal	
GAS EMISSION	CO ₂ emissions	lb	E CO2	53,796,21 ²
	CO emissions	lb	E _{co}	10,099
	NOx emissions	lb	E _{NOx}	64,632
	SOx emissions	lb	E _{SOx}	317,102
accidents durin miscellaneus a work ACCIDENTS expected num deadly acciden	expected number of accidents during miscellaneus activities	-	NI	0.510
	expected number of deadly accidents during miscellaneus	-	N _F	0.00
ENERGY	energy consumption	MJ	E	3.23E+06

.